Implementation and testing of the One-
Way Active Measurement Protocol
(OWAMP)

Student: Kenan Cenanovic
Adyvisors at UPC: René Serral Gracia
Jordi Domingo Pascual
Advisors at KTH: Thomas Lindh
Date: 2/2/2004

Abstract

The IETF IP Performance Metrics (IPPM) working group has proposed The One-Way
Active Measurement Protocol (OWAMP) draft standard for measuring metrics like
one-way packet delay and loss across Internet paths. The OWAMP protocol is used
for active measurement of network performance by adding additional traffic to an IP-
network. The task was to implement all parts of the protocol and verify that is works
appropriately by performing tests on existing experimental network. The
programming language that was used for implementing the OWAMP was C because

it is fast and commonly used for developing of real time applications software.

Preface

This report is a part of the master thesis which is the concluding stage of 4,5 year
long engineering program called Master of Computer Networks at the Royal Institute
of Technology (KTH) in Stockholm. Thanks to the cooperation between KTH and
Universitat Politécnica de Catalunya (UPC) in Barcelona, it was possible to perform
the master thesis at UPC’s research center called Advanced Broadband
Communications Center (CCABA). I would like to thank Josep Solé Pareta for giving
me opportunity to do my master thesis at Universitat Politeécnica de Catalunya (UPC)
through Erasmus student exchange, and I would also like to thank my supervisors
Jordi Domingo Pascual and René Serral Gracia for truly helping and supporting me
during this whole project. Grateful thanks to Karin Linde at international KTH office

for her engagement in making contacts with UPC.

Table of Contents

ADSIFACE cevreiiinnnnnnieieiiiiiiiinnttteeeeccisiintntteeeesscsssssssssteeeesssssssssssssaseesssssssssssssassassssssses 5
g T TN 6
Table Of CONLENLS ..cccovveurueereriiiiiisiisrssnnnririccssssssssansesssns 7
1. INtrodUCtioN..ccccviiiruueeeerieccisisssssnnnrenecssnnans 9
1.1 Internet ProtoCOl (IP)ccoueiiiiiiiiieee e e 9
L2 TCP VS. UDP .t e 10
1.2.1 Transmission Control Protocol (TCP)..............cccccccoouevicvieiiieeaeieeinnnn 10
1.2.2 User Datagram Protocol (UDP)ccccocvuiiieiiiiiiiiiiiiieeeeeeeeeiieen 12

1.3 Passive MEaSUICIMENLc.uuvviiiiieeeeeeiiiiiiiiieeeeeeeeesiiitreeeeeeeeessnnaraneeeeeeesennnnnns 13
1.4 ACtIVE MEASUTCIMENLcceeiiiiiiiiiiieeeeeeeeiiiiiiiteeeeeeeeesirrtreeeeeeeeesnnsanareeeeaeeeennnnes 14
1.5 The Network Time Protocol (NTP).....ccevviiiiiiiieiieeeeeeeeeeee e 14
1.6 LINUX VS. WINAOWS ...eiiiiiiiiiiiiiiiiiieeeeeeesiiiiiee e e e e e e ettt eeeeeeeesenaraaeeeeeeeeennnnnes 15
1.6.1 Linux in Prime Timeccoooviiiiiiiiiiiieee e 15
1.6.2 Negative Things about LiNUX...................cccoeeuuviiieeeeeeiiiiiiiiiieeeee e 16
1.6.3 Positive Things about LiNUX...................cccceeviuuiiiiieeeiiiiiiiiiieeeeee e 17

1.7 OWAMP OVEIVIEWevieiuiiieeiiieeeiiie et e st e et ettt e et eeseteeesnteeeenbeeesaneeeeneee 18

P2 3 F: 10 Lo 1] 1)1 L R 20
R I\ 1 11 U P 21
3.1 GOAl DESCIIPLION. ..eeeeeeeeeiiiiiiiieeeeeeeeecitt et e e e e e e e stee e e e e e e e esnnarraeeeeeeeeeennsnnenaes 21
3.2 Implementation Of OWAMPcooiiiiiiiiiiiiieeeeee e 22
3.3 OWAMP CONLIOL cooiiiiiiiiiiiiieeee et e e e e e e e e 24
3.3.1 CONNECLION SELUP ...t e e e e e 24
3.3.2 OWAMP-Control Commands......................couuuieeuueiieeeaeeeiiiiiiiiiieeeeeeeeens 24

3.4 Unspecified LINKS........coooiiiiiiiiieeieieee et e e e 27
3.4.1 Server to Session-Receiver Linkccccoovvvvuviiiiieeiiiiiiiiiiiieeeeeeeeis 28
3.4.2 Client to Session-Sender Link..................c..cccoouvviuuiiiiieeeieiiiiiiiiiieeeeeeeeens 29

3.5 Fetching the Results...........uuviiiiiiiiiiee e e 31
3.0 OWAMP-TESE ...ttt e et e e ee e 31
3.6.1 Test Sender BeRAVIOUTccccecuuuiiiieeeiiiiiiiiiiee e 31
3.6.2 Test Receiver BeRaVIOUTcccccuuviiiiiiiiiiiiiiiiiieeeeeeeeiieee e 33

T2 BN 1 B 1 36
4.1 TSt SCENATIO. ... uueevrrrreeeeeeeeiiiiitteeeeeeeessatrtaeeeeeeeeesannsaaeeeeeeeesssnsnnssaaeeeaesennnnnes 37
4.1.1 Test With Big PACKet SIZEccccoouviiiieeeieiiiiiiiiieee e 37
4.1.2 Test with Small Packet SiZe.............cccccuviiieeiiiiiiiiiiiiieeeeeeeeiee e 40

4.2 TSt ANALYSIS ...eeiiiiiiiieee e ettt e e e e ettt e e e e e e e st eeeeeeeeessnnnabaaeeeeeeeennnnns 43

5 Economical ANALYSEueeeeeiieiciiiissssnnnniiecsssssssssnnsessns 44
5.1 Implementation COSEoouuriiiiireeeeeiiiiieiee e et e e e e e et e e e e e e e e neeaaeeees 44
5.2 Cost fOT Program tEStINGueveeeeeeeriiiiiiiieeeeeeeeiiitieeeeeeeeeessearrreeeeeeeeesnsnneeeees 45
5.3 Cost for the @qUIPMENL..........uiiiiiieiiiiiiiiiieee e e e e e e e e e e eebeeeees 45
54 TOtAL COST.uuiiiiiiiiiii et e et e e s ibreee e 46

6 CONCIUSIONS .cccceiiiiiiiiiinrnnnniiiiicsissssssnnnnsnesses 47
6.1 FULUIE WOTKoeiiiiiiiieeeee e e e 47

T ReET@IEICES . .uuueeriiieiiiiirrsranerrnneccssssssssnssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssss 48
8 APPENAiXu.uuueeeriiiiiiiiiisrrrsnnrnniiecssssssssnnensesssns 49
8.1 TIME Plan ... e e e 49
8.2 Control-Client Configuration File...........ccccceeviiiiiiiiiiiieieiiiiiieeee e, 49
8.3 Fetch-Client Configuration Filecccccvviiiiiiiiiiiiieeeee e, 51

8.4 The format of Request-Session mesSagecccvvvvvviieeeeeeeiiiiiiiiieee e

8.5 The format of Result File

1. Introduction

Usually IP networks support only a best effort service, that limitation has not been a
problem for traditional Internet applications like web and E-mail, but it does not
satisfy the needs of many new applications like audio, video streaming, IP-Telephony
or video-conference, which demand high data throughput capacity (bandwidth) and

have low-latency requirements.

The performance of an IP network is of vital importance to both the service providers
and the customers. Parameters such as bandwidth, delay, jitter and loss can be
obtained when measuring the performance with two basic methods, actively by the

addition of test traffic or passively by observing user generated traffic.

The introduction of this document explains general concept of IP networks including
basic protocols like TCP and UDP that it uses, then two basic methods for measuring
of IP performance are introduced and difference between two mostly used OS
(Operative System) Windows and Linux. After that it explains basic concept and
gives an overview of the OWAMP (One-Way Active Measurement Protocol).

More details about OWAMP are given in chapter Method which explains actual
implementation of OWAMP. After implementation the program was tested on

experimental IP network and results are shown in chapter Analyses.

1.1 Internet Protocol (IP)

The Internet Protocol (IP) is the method or protocol by which data is sent from one
computer to another on the internet. Each computer (known as a host) on the Internet
has at least one IP address that uniquely identifies it from all other computers on the
Internet. When sending or receiving data (for example, an e-mail note or a Web page),

the message gets divided into little chunks called packets. [2]

IP is a connectionless protocol, which means that there is no continuing connection

between the end points that are communicating. Each packet that travels through the

Internet is treated as an independent unit of data without any relation to any other unit
of data. (The reason the packets do get put in the right order is because of TCP, the
connection-oriented protocol that keeps track of the packet sequence in a message.
The most widely used version of IP today is Internet Protocol Version 4 (IPv4).
However, IP Version 6 (IPv6) is also beginning to be supported. IPv6 provides for
much longer addresses and therefore for the possibility of many more Internet users.
IPv6 includes the capabilities of IPv4 and any server that can support IPv6 packets
can also support IPv4 packets.

1.2 TCP vs. UDP

The Internet is a worldwide system of computer networks — a network of networks in
which a user at one computer can get information from any other computer.
Technically, what distinguishes the Internet is its use of a set of protocols called the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP
and the UDP are the basic communication languages for many applications and the
Internet. There are a number of differences between the TCP and UDP, which are

summarized below.

1.2.1 Transmission Control Protocol (TCP)

The following fields are defined for the TCP header (see figure nr.1), as described in
[REC793]:

10

Figure nr. 1 showing TCP header

TCP Flags:

Figure nr. 2 showing TCP Flags

The TCP is the basic communication protocol for many applications and the Internet.
The TCP relies upon the IP layer to send information from one place to another. The
TCP layer manages the assembling of messages into smaller packets that are
transmitted over the Internet and received by another TCP layer at the destination,
which reassembles the packets into the original message. The IP layer handles the

address part of each packet so that it gets to the right destination.

Although TCP and UDP use the same IP layer, TCP provides totally different service
to the application layer. TCP provides a connection oriented reliable byte stream
service. The term connection oriented means the two applications using TCP must
establish a connection before they can exchange data with each other. This kind of
handshake makes sure that both the client and server are prepared to accept the
incoming data. The connection oriented TCP service provides the capability for

reliable data transfer. TCP in addition provides flow control and congestion control.

In the event of a packet/acknowledgement, loss, TCP retransmits the packet to the

receiver, adding to TCP’s reliability. [3]
TCP protocol is used for OWAMP-Control setup but not during actual OWAMP-Test
where UDP-Protocol is used for sending of Test-Packets in order to obtain proper test

results, one example of that are possible packet losses that can’t be detected if using

TCP because of retransmission.

1.2.2 User Datagram Protocol (UDP)

The following fields are defined for the UDP header (see figure nr.3), as described in
[REC768]:

'] 2 4 & 8 LY 12 14 16 18 20 22 24] 8 a0

udp_hdr Source Port Destination Port
udp_sport udp_dport
Length Checksum
udp_ulen udp _sum
udp data

Figure nr. 3 showing UDP header

The UDP is a simple, datagram oriented transport layer protocol. Each output (write)
operation by a process, causes exactly one UDP datagram to be sent. This is different
from a stream-oriented protocol such as the TCP, where the amount of data sent has
little relationship to what actually gets sent in a packet. Unlike TCP, UDP does not
provide the service of dividing a message into packets and reassembling at the other
end. UDP does not provide any reliability, UDP is not concerned with the guaranteed
delivery of the packets to the receiver and any such reliability should be added on by
the concerned application. UDP provides two services not provided by the IP layer. It
provides various services through different port numbers and optionally a checksum
capability to verify whether the data arrived intact. UDP does not provide flow control
and congestion controL,UDP (User Datagram Protocol) is anther commonly used
protocol on the internet. UDP is never used to send data such as: webpages, database

information, etc; UDP is used for audio and video. Streaming media such as Windows

12

Media Audio files, Real Player, and others use UDP because it offers speed! The
reason UDP is faster than TCP is because there is no error correction. The data sent
over the internet is affected by collisions, and errors will be present. This is one of the
reasons why streaming media is not high quality, other reasons are delay and packet

losses. It is also concerned with speed and use of bandwidth. [3]

1.3 Passive Measurement

Passive measurement is commonly used for monitoring the traffic without creating or
modifying it in order to collect data about performance and behavior of packet
streams. Passive measurement can be implemented by incorporating some additional
intelligence into network devices to permit them to identify and record the
characteristics and quantity of the packets that flow through them. Packet statistics
can then be collected without the addition of any new traffic. The level of detail of the
information collected, how the metrics are being processed and the volume of traffic

passing through the monitor device is dependent on the network metrics of interest.

Examples of the types of information that can be obtained using passive monitoring
are:

o Bit or packet rates
o Packet timing / inter-arrival timing

e Queue levels in buffers (which can be used as indicators of packet loss and
delay)

o Traffic / protocol mixes

e Delay

Passive measurements are carried out by observing normal network traffic and as such
do not disturb it.

13

1.4 Active Measurement

Active measurement is another way of measuring network performance and it
involves the injection of some probe packets into the network from which the relevant
metrics of that traffic can be measured. The sole purpose of probe packets is to
provide some insight into the way real network traffic can be treated within the

network.

The type of network metrics derived using active measuring, are:
e Delay (Time needed for a IP packet to travel from source to destination)
o Loss (Packets that are send but not received are considered to be lost)
e Delay variations (Even called Jitter is variation of packet delay times)

One of the advantages of active measurement is that it does not require full access to
network resources. (e.g. routers), disadvantages of active measurement is that it may

disturb the network by injecting artificial probe traftfic into the network.

1.5 The Network Time Protocol (NTP)

The Network Time Protocol (NTP) is used to synchronize the time of a computer
client or server to another server or reference time source, such as a radio or satellite
receiver or modem. It provides accuracies typically within a millisecond on LANs and
up to a few tens of milliseconds on WANSs relative to Coordinated Universal Time
(UTC) via a Global Positioning Service (GPS) receiver, for example. Typical NTP
configurations utilize multiple redundant servers and diverse network paths in order to

achieve high accuracy and reliability. [6]

With the increasingly wide availability of affordable global positioning system (GPS)
and CDMA based time sources, hosts increasingly have available to them very
accurate time sources either directly or through their proximity to NTP primary
(stratum 1) time servers. By standardizing a technique for collecting IPPM one-way
active measurements, it could be possible to create an environment where IPPM

metrics may be collected across a far broader mesh of Internet paths than is currently

14

possible. One particularly compelling vision is of widespread deployment of open
OWAMP servers that would make measurement of one-way delay as commonplace as

measurement of round-trip time using an ICMP-based tool like ping.

The OWAMP uses Network Time Protocol (NTP) to synchronise system clocks for
Test-Packet sender and receiver in order to obtain higher accuracy of Test-Packet

delay times

1.6 Linux vs. Windows

The OS (Operative System) used when programming was Linux because of it’s
flexibility and stability when programming and makes it more suitable than Windows
for software development .Main differences between those two main OS are

explained below.

1.6.1 Linux in Prime Time

As Linux stands today, a majority of Windows users don't have a good reason to make
a switch. For folks who aren't all that technically adept, or who have hardware that
isn't supported in Linux, sticking with Windows and the applications they already

have just makes more sense.

As far as Linux has come, it still has far to go to achieve universal appeal. Over the
past two years, the companies that sell Linux distributions have improved setup, the
user interface, and technical support. But many rough edges remain. Without more
fixes to smooth the operation of apps and more support from the major hardware
makers (many aren't writing Linux drivers for their products), Linux's future continues
to be uncertain.

But for savvy users who want to try out its myriad options, Linux can provide a
stable, secure, and inexpensive computing experience. With the parts it already has

and more spit-and-polish, Linux could become a top-tier operating system.

15

1.6.2 Negative Things about Linux

e You must be an expert: Commercial distributors and GUI makers have
simplified some tasks, but many procedures still require dropping to the
command line, decoding cryptic system messages, or hand-editing what can be
complex configuration files. If you fail to learn at least a smattering of Linux's

intricacies, chances are good that you won't get much done.

e Lagging hardware support: Linux's altruistic band of designers does an
admirable job of building in support for new types of hardware. Without a
major push for Linux drivers from hardware manufacturers, however, your

Linux distribution may never support some peripherals.

e Second-tier software: You can get every conceivable utility for Linux, most at
no cost, but many can't match the best Windows or Mac apps. Premier Linux
apps like StarOffice, Evolution, and The GIMP still provide only a subset of
the features found in Microsoft Office, Microsoft Outlook, and Adobe
Photoshop. What they do offer is more than adequate--unless you need one of

the missing features.

e A confusion of distros: Since Linux is free, anybody can package the operating
system and sell their own distribution. Once you decide to give Linux a shot,
you still need to determine which distribution is a good fit: Mandrake, Red
Hat, SuSE, or one of dozens of others. Hardware support can vary, and user

friendliness can be nonexistent in some versions.

e Support at a price: People complain about the cost of Microsoft's $35-per-
incident tech support. With few exceptions, however, Linux distributors aren't
any cheaper; with SuSE, the free installation support is severely limited. If
you're a Linux beginner planning on calling for help, consider installing

Mandrake Linux, with its $15-per-call (or less, in quantity) support policy.

16

1.6.3 Positive Things about Linux

o It's free: Even though distributors can add value to Linux (by adding installers,
providing tech support, and publishing multi-CD or multi-DVD installation
sets), is also free to download it. From the Web site, you can download at no
charge all of the software to install certain version of software. Download and
give away as many copies as you want. Install it on as many PCs as you want.
The only things that will cost you money are printed manuals, technical

support over the phone, and a nice package with discs.

o Highly adaptable: Linux distributors can customize their version of Linux to
target a specific type of user. Programmers can modify the source code to suit
their needs, and redistribute the software for free. The result is a completely
customizable OS, free from the constraints of having to do things in a

particular way.

e Strong on security: Linux doesn't often fall victim to network security
vulnerabilities. When it does, legions of Linux coders generally release
patches that fix the problem within 24 hours--though users still need to
download and apply these patches. Virus writers haven't made Linux a major

target yet.

o Plentiful on line help: Can't find an answer to a Linux question in the included
documentation? You'll find hundreds of FAQs, how-tos, and message boards

on the Web. Start your search at The Linux Documentation Project.

e One OS fits all: Linux, in one form or another, will run on everything from a
486 doorstop with SMB of RAM (try that with Windows XP) to clusters of
high-speed servers. It won't be the same version of Linux running the same
applications, but Linux is good at fitting in where Microsoft leaves machines

behind with Windows' ever-increasing minimum system requirements. [4]

17

1.7 OWAMP Overview

OWAMP-Protocol is used for active performance measuring of IP-networks by
inserting UDP-streams of test-packets in to IP-network in order to obtain the travel

time from source to destination for each test packet (one way delay).

Growing availability of good time sources to network nodes, makes it increasingly
possible to measure one-way IP performance metrics with high precision.

To do so in an interoperable manner, a standard protocol for such measurements is
required. The One-Way Active Measurement Protocol (OWAMP) can measure one-
way delay, as well as other unidirectional characteristics, such as one-way loss. This
protocol is at the time of this writing is in draft status. Current draft is 7, is expected to

become an RFC in few months.

The One-Way Active Measurement Protocol (OWAMP) consists of two inter-related
protocols: OWAMP-Control and OWAMP-test. Where OWAMP-Control is used to
initiate, start and stop test sessions and fetch their results, while OWAMP-Test is used

to exchange test packets between two measurement nodes.[1]

OWAMP-Control is designed to support the negotiation of:

Sender and receiver addresses

e Port numbers

e Session start time

e Session length

o Test packet size

e The mean Poisson sampling interval for the test stream

e Per-hop behaviour (PHB)

18

e Encryption

o Authentication for both test and control traffic

Defining roles of:

Session-Sender: the sending endpoint of an OWAMP-Test session

o Session-Receive: the receiving endpoint of an OWAMP-Test session

e Server: an end system that manages OWAMP-Test sessions, is capable of
configuring per-session state in session endpoints, and is capable of returning

the results of a test session
e Control-Client: an end system that initiates requests for OWAMP-Test
sessions, triggers the start of a set of sessions, and may trigger their

termination.

e Fetch-Client: an end system that initiates requests to fetch the results of

completed OWAMP-Test sessions

19

2 Background

The IETF IP Performance Metrics (IPPM) working group has proposed draft standard
metrics for one-way packet delay [RFC2679] and loss [RFC 2680] across Internet
paths. Although there are now several measurement platforms that implement
collection of these metricsf SURVEYOR], [RIPE], there is not currently a standard
that would permit initiation of test streams or exchange of packets in an interoperable
manner. To do so a standard protocol for such measurements is required. The One-
Way Active Measurement Protocol (OWAMP) can measure one-way delay, as well as
other unidirectional characteristics, such as one-way loss.

In order to understand better the features of this report the reader should have basic
knowledge about how IP-networks functions, about different QOS-parameters and

tools that are used for measuring of network performance.

20

3 Method

3.1 Goal Description

The primary goal of this project was Implementing of the One-Way Active
Measurement Protocol’s (OWAMP) functions necessary for basic use of the protocol
and test-performing, features like encryption, authentication and Poisson sampling

were left as optional.

Planned goals (features):

Implementing of OWAMP-Control

e Implementing of OWAMP-Test Unauthenticated Mode

e Variable packet length

o Test scheduler with pattern test support

e [Pv4/IPv6 support

e Configuration file support

The protocol is implemented by using programming language C because it is fast and

commonly used for developing of real time applications software. Because of several

logically separated roles, the C-program was made of 5 different program-code files

which follow the IPPM recommendation, allowing broad flexibility in use.

Given that this thesis is framed on a bigger research project, once implemented, the

software will be used for analysing an existing network. This way is possible to verify

21

the good behaviour of the implemented protocol. Lately this program will be

integrated in the existing CCABA software-platform for further tests.

3.2 Implementation of OWAMP

As shown in figures 4 and 5 different logical roles can be played by the same host

allowing broad flexibility in use.

Session C B:;»
Sender /

Control Client Fetch-Client

Session
Receiver

[OWAMP-Control [] Unspecified Links
E OWAMP-Test

Figure nr. 4 showing relationship scenario between different logical roles

Session-Sender =0 - 1 Server
Fetch-Client :;%

[Session-Receiver
Conirol-Clien

O OWAMP-Contral
O OWANMP-Test

Figure nr. 5: Different logical roles can be played by the same machine

22

OWAMP consists of two inter-related protocols: OWAMP-Control and OWAMP-
Test.

OWAMP-Control is layered over TCP and is used to initiate and control

measurement sessions and to fetch their results

OWAMP-Test is layered over UDP and is used to exchange test packets between two

measurement nodes.

The initiator(client) of the measurement session establishes a TCP connection to a
well-known port on the target point(server). An OWAMP server should listen to this
well-known port.

OWAMP-Control messages are transmitted only before OWAMP-Test Sessions are
actually started and after they complete (with the possible exception of an early Stop-

Session message).

The OWAMP-Control and OWAMP-Test protocols support three modes of operation:
unauthenticated, authenticated, and encrypted. The authenticated and encrypted

modes are not implemented.

Performing of OWAMP-Test and Result-Fetching is made in five different steps as

shown below in figure nr. 6.

: 4 '
Session Il :> Session
Sender : % = Receiver
3 '
Server
Control-Client Fetch-Client

[OWAMP-Control [l Unspecified Links
E OWAMP-Test

Figure nr. 6 showing order in which different computers connect each other during the
OWAMP Test

23

3.3 OWAMP Control

3.3.1 Connection Setup

Before either a Control-Client or a Fetch-Client can issue commands of a Server, it
must establish a connection to the server. Connection setup is a initiating stage for the
client - server connection (step nr. 1, see figure 6), it is preformed directly after client
opening a TCP connection to well-known port which server listens to and receiving

new client connections at.

During this stage client and server agrees on which mode to use when exchanging
different control messages between each other, the chosen mode is used during the
whole connection time. There are three different modes: unauthenticated,
authenticated, and encrypted. The authenticated or encrypted modes require endpoints
to possess a shared secret.

Only unauthenticated mode is implemented.

3.3.2 OWAMP-Control Commands

The following commands are available for the client: Request-Session, Start-Sessions,
Stop-Session, Fetch-Session. The command Stop-Session is available to both the
client and the server.

While conducting active measurements, the only command available is Stop-Session.

The Request-Session command (see appendix 7.4) is issued by an OWAMP client to
an OWAMP server (step nr. 1, see figure nr. 6), it contains all important test data
needed for performing OWAMP test, that makes it the most important control
command during Control setup. The OWAMP server must respond with an Accept-
Session message, an Accept-Session message may refuse a request. Different fields of

Request-Session Message are explained below.

24

IPVN is the IP version numbers for Sender and Receiver. In the case of IP
version number being 4, twelve octets follow the four-octet IPv4 address
stored in Sender Address and Receiver address. These octets MUST be set to
zero by the client and MUST be ignored by the server. Currently meaningful
IPVN values are 4 and 6. OWAMP Control Protocol is implemented in the
way that It can be used on either IPv4 or IPv6 networks, address resolution
between hostname and host dot formed address is flexible making it
unnecessary for user to have knowledge about what type of network involved

hosts are located on

Conf-Sender and Conf-Receiver is set to 0 or 1 by the client. The server must
interpret any non-zero value as 1. If the value is 1, the server is being asked to
configure the corresponding agent (sender or receiver). In this case, the server
should disregard the corresponding Port value. At least one of Conf-Sender
and Conf-Receiver must be 1. The whole program is based on scenario
showed in figure nr. 4, that’s why the server is only able to configure receiver,

in this case configuration of sender is performed by the client.

Number of Schedule Slots, as mentioned before, specifies the number of slot
records that go between the two blocks of Integrity Zero. They are used for
making the time schedule for sending of test packets, sender uses it to
determine when to send test packets, and receiver for calculating send times

for all test packets.

Number of Packets is the number of active measurement packets to be sent

during this OWAMP-Test session .

If Conf-Sender is not set, Sender Port is the UDP port OWAMP-Test packets
will be sent from. If Conf-Receiver is not set, Receiver Port is the UDP port

OWAMP-Test packets are requested to be sent to.

The Sender Address and Receiver Address fields contain respectively the
sender and receiver addresses of the end points of the Internet path over which

an OWAMP test session is requested.

25

o SID is the session identifier. It can be used in later sessions as an argument for
Fetch-Session command. It is meaningful only if Conf-Receiver is 0. This

way, the SID is always generated by the receiving side

o Padding length is the number of octets to be appended to normal OWAMP-
Test packet.

o Start Time is the time when the session is to be started. This timestamp is in

the same format as OWAMP-Test timestamps.

e Timeout (or a loss threshold) is an interval of time (expressed as a timestamp).
A packet belonging to the test session that is being set up by the current
Request-Session command will be considered lost if it is not received during

Timeout seconds after it is sent.

e Type-P Descriptor covers specify the requested Per Hop Behaviour
Identification Code (PHB ID)as defined in RFC 2836.If Conf-Sender is set,
Type-P Descriptor is to be used to configure the sender to send packets
according to its value. If Conf-Sender is not set, Type-P Descriptor is a
declaration of how the sender will be configured. The value of all zeros

specifies the default best-effort service.

o Integrity Zero Padding must be all zeros in this and all subsequent messages
that use zero padding. The recipient of a message where zero padding is not
zero must reject the message as it is an indication of tampering with the
content of the message by an intermediary (or brokenness). This will ensure
data integrity. In unauthenticated mode, Integrity Zero Padding is nothing

more than a simple check.

One or more schedule slots immediately follow request-Session command:

26

0 1 2 3
0123457850123 45785%01234567823501

e B e s e e s e e e e e sty s e e S S e e e e e e e el s Ny sy sl
| Slot Type |
=ttt MBZ

I
e B e e S S e
| 51lot Parameter (Timestamp)

s St T e et el St SR
Figure nr. 7 showing the Format of Schedule Slot

The sender and the receiver need to both know the same send schedule. This way,

when packets are lost, the receiver knows when they were sent.

To implement this, we have a schedule with a given number of “slots'. Each slot has a
type and a parameter. Two types are supported: exponentially distributed pseudo-
random quantity (denoted by a code of 0) and a fixed quantity (denoted by a code of
1). The parameter is expressed as a timestamp and specifies a time interval. For a
type 1 slot, the parameter is the delay itself. The sender starts with the beginning of
the schedule, and “executes' the instructions in the slots; for a slot of type 1, wait the
specified time and send a test packet (and proceed to the next slot). The schedule is

circular: when there are no more slots the sender returns to the first slot.[1]

The sender and the receiver must be able to reproducibly execute the entire schedule

so if a packet is lost, the receiver can still attach a send timestamp to it.

3.4 Unspecified Links

As shown in figure nr. 4 unlabeled links that connects Control-Client to Session-
Sender and Server to Session-Receiver are unspecified by OWAMP draft and are
proprietary made protocols. In order to keep things simple and making it easier to
understand the Control-messages that are used have the same format as specified by
OWAMP draft, but only some of them is used like: Request-Session, Accept-Session,

Start-Session and Stop-Session

27

+

I
I
I
+
I
I
+

3.4.1 Server to Session-Receiver Link

Server to Session-Receiver link (step nr.2 in figure nr. 6) is proprietary made protocol
used for setting up an OWAMP-Test. After receiving Request-Session message (see
appendix 7.4) from the client, server either accepts or rejects Request-Session, if
rejected Accept-Session message (see figure nr. 9) is send back to client with value of
1 (reject) in accept field, otherwise if accepted the server connects Session-Receiver
on a well known port, after establishing connection the same Request-Session
message it is send to Session-Receiver. Then the message is examined by Session-
Receiver and Control-Ack message (see figure nr.8) is send back to server, 0 in accept
field means Request-Session accepted, 1 means that it is rejected. After receiving
Control-Ack message the server examines value in accept field, if accepted the SID
(Session Identity) number is made which could be later used for fetching results, SID
value is copied in to SID field in Accept-Session message(see figure nr. 9) and accept

field is set to 0 (accept) . Then Accept-Session message is send to the client.

The format of Control-Ack message:

0 1 z 3
01z 3456 78 %012 3455 78 5%012 34567859501
+—t—t—F—t—F—+—F—F—+—+—+
| Accept | |
t—t—t—t—F—F—F—+—+
| Unused (15 octets) |
| |
| |
+—t—t—F—t—F—+—F—F—+—+—+
| |
| Integrity EZero Padding (1é octets) |
| |
| |
+

+—f—t—F—t—F—F—F—F—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F—F—F—+—+—

Figure nr. 8 showing the Format of Control-Ack Message

To each Request-Session message, an OWAMP server must respond with an

Accept-Session message:

28

0 1 2 3
01234587 85%012345785%012345e785%01
+—t—F—F—F—F—F—F—F—F—F—F—+—F—F—F—F—F—F—F—F—F—+—F—F—F—F—F—+—F+—F+—+—+
| Locept | Unused | Port |
+—+—+—+—F+—+—+—t+—F+—+—+—+—+—F+—F—+—t+—F+—F—F—F+—F+—+—F—F—F+—+—F+—F—F—+—+— |
I I
| SID (1& octets) |
I I
I I

ottt -ttt —F—t—F—F—F—F—F—F—t—F—F—F—F—F—F——F—F—F—+
| |
I Integrity Zero Padding (12 octets) |

I |
ottt —t—t—F—F—F—F—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+
Figure nr. 9 showing the Format of Accept-Session Message

3.4.2 Client to Session-Sender Link

When Accept-Session is received by the client accept field is examined, if Request-
Session is accepted, the client connects Session-Sender (step nr. 3 in figure nr. 6) on a
well known port then client sends the same Request-Session message to the Session-
Sender, which responds by sending Control-Ack message, if Request-Session is
accepted by the Session-Sender then it is ready for performing an OWAMP-Test (step
nr. 4 in figure nr. 6) and waits for the Start-Session message which is issued by the

client.

The format of Start-Session message:

0 1 2 3
0123456785012 345e78%0123456785%01
Fot— ettt —F— -t —+—+—+
| 2 I |
B s S e bt |

| Unused (15 octets)

| |
| |
ottt =ttt =ttt =ttt —F—F—F—F—F—F—F—F—F—F—+—F—+—+—+
| |
| Integrity Zero Padding (le octets) |
| |
| |
e T e s s T et T S T e S B

Figure nr. 10 showing the Format of Start-Session Message

Above, the first octet (2) indicates that this is the Start-Session command.

29

After receiving the Start-Session message, Session-Sender starts performing
OWAMP-Test by sending UDP Test-Packets to Session-Receiver. It keeps sending

until all Test-Packets are sent or until Stop-Session message is issued by the client.

The format of Stop-Session message:

0 1 2 3
01234567868 5%012345678%5%012z23456 78501
ottt —t—F—F—F—F—F—F—F—F—F—F—F— bt —F—F—F—F—F—+—+—+—+
| 3 | Accept | Unused |
+—t—F—t—F—+—Ft—F—t—F—F—F—+—F+—F—F—F—F—F—F—F—Ft—F—+—F—F—F—F—F+—+—+—+—+

| Number of Sessions

ottt —t—F—F—F—F—F—F—t—F—F—F—F—F—F—F—t—F—F—F—F—F—+—+—+—+
| Unused (8 octets) |
I I
ottt —t—F—F—F—F—F—F—t—F—F—F—F—F—F—F—t—F—F—F—F—F—+—+—+—+
I I
| Integrity Zero Padding (1¢ octets) |
I I
I I
ottt —t—F—F—F—F—F—F—t—F—F—F—F—F—F—F—t—F—F—F—F—F—+—+—+—+

Figure nr. 11 showing the Format of Stop-Session message

This is immediately followed by 0 or more Session Packets sent descriptions (the
number of session packets sent records is specified in the 'Number of Sessions' field

above):

1] 1 2 3
01z2345¢c78 3530123457855 012345c7853%01
e e S S T S e T S St RIS

SID (16 octets)

Session Packets Sent
R s s e S e s s et ST e T e s ol e e S

+_
I
I
I
I
b e e T e T I T
I
+_
I
| Integrity Zero Padding {12 octets)

I

4 —

5 6 B R R

Figure nr. 12 showing the Format of Session Packets

All these messages comprise one logical message: the Stop-Session command

indicated by first octet (3)

30

When Session-Sender receives Stop-Session command, it ends OWAMP- test by
cancelling further sending of Test-Packets. After not receiving any of Test-Packets
during the receive time-out period, Session-Receiver considers OWAMP- test being

finished.

3.5 Fetching the Results

After performing of an OWAMP- Test and working on result data in order to detect
and record possible packet losses, result data is sent to the Server.

Result data 1s implemented as structure called Packet-Records, each structure contains
test data in form of: Send-time stamp, Receive-time stamp and sequence number for
one Test-Packet.

Fetch-Client's task is to fetch result data from the Server (Step nr.5 in figure nr. 6). In
order to perform fetching it must be configured. For that purpose a configuration file
called fetchconfig.cfg is made (see appendix 7.3).

The configuration data that user must enter before fetching starts is: Server-name,
Session Identification number (SID) of OWAMP-Test to fetch results from, the
number of Packet-Records by specifying start-sequence and end-sequence number to

fetch Packet-Records between and file name to so save Test-results to.

3.6 OWAMP-Test

OWAMP-Test protocol. It runs over UDP using sender and receiver IP and port
numbers negotiated during Request-Session exchange.

As OWAMP-Control, OWAMP-Test has three modes: unauthenticated, authenticated,
and encrypted. Like in OWAMP-Control the only implemented mode unauthenticated
because all OWAMP-Test sessions spawned by an OWAMP-Control session inherit

its mode.

3.6.1 Test Sender Behaviour

The sender sends the receiver a stream of packets with schedule as specified in the

Request-Session command (Step nr. 4 in figure nr. 6). The format of the body of a

31

UDP test packet in the stream depends on the mode being used, because of

implementing unauthenticated mode, only Test Packet used in that mode is shown

below

in figure nr. 13.

Test packet in unauthenticated mode:

0

0123456783012 3456785%0122 345678301
Fot—t—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F -ttt —F—F—F -t —F—F—F—+—+

I
+—+-
I
I

+—+-
I
+—+-

+—+-

1 2 3

sequence Number

Fot—t—t—t—t—F—t—F—t—F—t—F—t—F—t—F -ttt —F—F—F -t —F—F—F—+—+

Timestamp

s S s ST L e et S s s s S S S

Error Estimate |
ettt —F—F+—+

Packet Padding

Figure nr. 13 showing the Format of Test Packets

Sequence numbers starts with 0 and are incremented by for each subsequence

test packet.

Timestamp is same as in RFC 1305 with first 32 bits representing unsigned
integer for number of seconds, and second 32 bits also unsigned integer for

number of microseconds.

The Error Estimate specifies the estimate of the error and synchronization.

Packet Padding consists of all zeros, the size of it depends of value in Padding
Length field in Request-Session command. Padding Length is same for all test
packets and all of them have same packet size during the entire test . With
Padding Length(packet size in configuration file) set to zero the packets are
send without any padding which gives the minimum payload size of 40 Bytes
for a Test Packet, the maximum payload size is chosen by the user depending

on network type for test to be performed on.

32

Fot—t—t—t—t—F—t—F—t—F—t—F -ttt —F—F—F -t —F—F—F—+—+

During the implementation of Test Sender among the other built in C programming
functions two of them were mostly used and are most important for sender’s
behaviour. The first one is signal(SIGALRM, send packet signal) function for
handling of alarm signals received from the other function called setitimer(REAL,
&new, NULL), parameter new contains struct timeval variable time expressed in
seconds and microseconds to wait for before the next signal is send, it follows send
times specified in Time Schedule in Request Session message , when signal is
received by the signal(SIGALRM, send packet signal) function it calls for
send packet signal function which is used for actual sending of Test Packet.

The sending process is repeated until sending the number of Test-Packets specified in

Request-Session.

3.6.2 Test Receiver Behaviour

IPv4 specification makes no claims about the time it takes the packet to traverse the
last link of the path. Receiver knows when the sender will send packets with the
Timeout parameter defined in Request-Session. Packets that are delayed by more that
Timeout are considered lost

The choice of a reasonable value of Timeout is a problem faced by a user of OWAMP

protocol, not by an implementer

As packets are received:

e Timestamp the received packet.

o In authenticated or encrypted mode (not implemented) decrypt first block (16
octets) of packet body.

o Store the packet sequence number, send times, and receive times for the

results to be transferred.

33

o Packets not received within the Timeout are considered lost. They are
recorded with their sequence nr, presumed send time, and receive time

consisting of a string of zero bits.

Packets that are actually received are recorded in the order of arrival. Lost packet
records serve as indications of the send times of lost packets. They are placed at the

very end of Packet-Record list.

Packets that have send time in the future are recorded normally, without changing

their send timestamp, unless they have to be discarded.

Packets with a sequence number that was already observed (duplicate packets) are
recorded normally, because IP networks sometimes introduce duplicate packets. The

protocol is able to measure duplication.

If any of the following is true, packet must be discarded:

e Send timestamp is more than Timeout in the past or in the future.

e Send timestamp differs by more than Timeout from the time when the packet

should have been sent according to its sequence nr.

e In authenticated or encrypted mode (not implemented), any of the bits of zero

padding inside the first 16 octets of packet body is non-zero.

After receiving Request-Session which contain all data necessary for setting up and
performing an OWAMP Test, receiver starts listening on UDP-port (Step nr. 4 in
figure nr. 6), when UDP Test-Packets are received, receiver takes a receive-time
stamp and stores that time value together with send-time stamp in the structure called
Packet-Record. After that Packet-Record structure is stored in to Packet-Record
linked-list, which is of dynamic size because of possible packet losses and duplicate

packets.

34

Every time a packet is received receiver starts waiting (listening) for a next one to
arrive, if not received during the time period of time-out seconds (see appendix 7.4)
receiver stops receiving Test-Packets. For setting up time-out three functions are used
signal (SIGALRM, stop_receive) which calls for stop receive function when alarm
signal is received, alarm signal is send by alarm function alarm(), it takes receive-time
out value as argument.

Then receiver makes the other list containing calculated send-time stamps and
sequence numbers(Test-Packet numbers) for all Test-Packets. Then that list is
compared with Packet-Record linked-list in order to detect packet losses and duplicate
packets. Lost and duplicate Test-Packets are recorded at end of Packet-Record linked-
list. At the end Packet-Record linked-list is send to the server.

35

4 Analysis

After concluding implementing OWAMP draft, the program was tested in two
different scenarios based on different packet size to insure that it functions properly
and to analyse collected result data. Before running an OWAMP-Test a configuration
file [config.txt] (see appendix 7.2) must be made for a Test Client, Values in rows that
begin with a sign * are not to be changed, they are made for further implementing.
Result files that were fetched after four different OWAMP- Tests were analysed with
an existing program called NetMeter [5]. In order to fetch results a configuration file
must be made as showed in appendix 7.3.

Result file (see appendix 7.5) obtained after fetching contains send and receive times
for every Test-Packet and should be processed by some program like NetMeter in

order to obtain an OWAMP-Test result overview.

The test was performed using three different computers, where two of them were
acting respectively as a sender and receiver and the third one was configured as a

router between them (see figure nr. 14).

During the OWAMP test sender and receiver have also been generating background

traffic using NetMeter.

Router

Session-Sender &0}
Fetch-Client
Control-Client J 0 OWAMP-Test

Server
| Session-Receiver
= = » s Background Traffic

Figure nr. 14 showing Test Scenario

36

4.1 Test scenario

4.1.1 Test with Big Packet Size

The first test was performed using big packet size which is a maximum total IP packet
size of 1500 Bytes that can be used in an Ethernet network, with a maximum payload
of 1454 Bytes [1500 — 20 (IPv4 header) — 8 (UDP header) -18 (Ethernet header)].
Test is performed two times, first time with a background traffic utilized by NetMeter
program along test path, and second time without any background traffic.

Result files are analysed with NetMeter program, results are shown below.

Input data in config.txt:

SERVER ADDRESS = xarello.ccaba.upc.es #Server Address

SENDER ADDRESS = xarello.ccaba.upc.es #Test Sender Address

RECEIVER ADDRESS = dell.ccaba.upc.es #Test Receiver Address

TEST START TIME = 10 #Nr_of Sec Before Test starts

SHEDULE SLOTS TIMES=111111111 1#Send schedule times in microsec
Nr OF TEST PACKETS =30000 #Nr_of Test{lUDP] Packets

I[P_VERSION =4 #Ip Version

TEST SENDER PORT = 3594 #Sender UDP_port

TEST RECEIVER PORT = 3595 #Receiver UDP_port

TEST PACKET SIZE = 1454 #Test Packet Payload Size[Bytes]

TEST RECEIVE PACKET TIMEOUT =15 #WaitTimeout for UDP_Packets[Sec].
Background traffic generated by NetMeter was 4000 packets/sec with a packet size of
1400 Byte, makes it 4000 * 1400 = 5 600 000 Byte/sec which is around 44,8 Mbit/sec

37

Output results obtained after running the result file in NetMeter:

FLOW: 0001 (BACKGROUND TRAFFIC ~ 45 Mbit/sec)

one=-Hay delay distribution

1511 {-------aoaaa

13.43 {------------

11.79 {----------—-

10,07 - -

of packets

G.0d

3.36

5.39 [

NETMETER

Figure nr. 15 showing Big packet Test result with Background traftic

SOURCE
DESTINATION :

Num pkts recvd :
Join delay
Recv pkt rate
Recv data rate
Pkts dropped
Ave. Pkt Delay
Max. Pkt Delay :
Min. Pkt Delay

Delay variation

: 147.83.130.169:3594

192.168.11.4:3595

30000

: 115507.007812 sec
: 99.989 pkt/sec

: 1180.708 kbps

: 0

: 0.007954 sec

0.060314 sec

:0.004259 sec
:0.056055 sec

B IPvw4 Big Packet Hgen 4088

38

FLOW: 0002 (WITHOUT BACKGROUND TRAFFIC)

One=-Hay delay distribution

3.82 {o----ooooo-- e
340 Jo-oooooo- e
2,97 {------- =lls|lelledpesscacascacsscaasscscaacsscacsccacssosasaad
]
#® 255 {------- =||=||el|ecdfpesscccsscacssccasscscaacsscacsccacssosasaad
-
[X]
m
& zaz |e------ |
[
e B IPv4 Big Packet
S
1.70 {bsscscoccscoassccassoscassscaasscoassoscsasd
1,27 {---~----#-#-®-B- B - - - - - -~ -~ -~ -~~~ ~ - __
0,85 {-------BCB B B W oo
0,42 {---- - - - DS .-
T 1T 17 1T 1T 1T 1T T T T T 1T T T T T T T TT1
[T O o T o T o O o B e g e Vg O 1 o O o e . O | o e | T | T ¥ T o o e T
e R A s B B R R A T L A
| "ot O o I o T ¥ o Vo o O Ve O T O T O o ¥ LY o Y Y ¥ LN LY o LY o L s LY o ¥ LY ¥ ¥ LW I LY Y LY ()
NETHMETER

delay {msec}

Figure nr. 16 showing Big packet Test result without Background traffic

SOURCE : 147.83.130.169:3594
DESTINATION : 192.168.11.4:3595

Num pkts recvd : 30000

Join delay : 113484.007812 sec
Recv pktrate : 99.989 pkt/sec
Recv data rate : 1180.708 kbps
Pkts dropped : 0

Ave. Pkt Delay : 0.005727 sec

Max. Pkt Delay : 0.006549 sec

Min. Pkt Delay : 0.005604 sec
Delay variation :0.000945 sec

39

4.1.2 Test with Small Packet Size

The second test is almost the same as the first one, only difference is test packet size,
this time the minimum packet size is used, where the minimum total size is 86 Byte [
40 (payload) + 20 (IPv4 header) + 8 (UDP header) + 18 (Ethernet header)]. Test

results are shown below.

Changed values in configuration file (config.txt):

TEST PACKET SIZE =40 #Test Packet Payload Size[Bytes]

40

Background traffic = 45 Mbit/sec
Output results obtained after running the result file in Netmeter:

FLOW: 0003 (BACKGROUND TRAFFIC ~ 45 Mbit/sec)

One=Hay delay distribution

F1.60 oo oo oo _____/

= J

2457 |-]

P06 oo e e o.M

4755 oo

B TPv4 Snall Packet Hgen 4808

% of packets

duod oo]

10,53 docmomomoo oo W

METMETER delay {(msec)

Figure nr. 17 showing Small packet Test result with Background traffic

SOURCE : 147.83.130.169:3594
DESTINATION : 192.168.11.4:3595
Num pkts recvd : 30000

Join delay : 120563.007812 sec
Recv pktrate :99.991 pkt/sec
Recv data rate :31.998 kbps

Pkts dropped : 0

Ave. Pkt Delay : 0.006498 sec

Max. Pkt Delay : 0.058723 sec

Min. Pkt Delay : 0.004997 sec
Delay variation :0.053726 sec

41

FLOW: 0004 (WITHOUT BACKGROUND TRAFFIC)

One=Hay delay distribution

B IPv4 5Small Packet

of packets

METHMETER delay (nsec)

Figure nr. 18 showing Small packet Test result without Background traffic

SOURCE : 147.83.130.169:3594
DESTINATION : 192.168.11.4:3595
Num pkts recvd : 30000

Join delay : 119581.007812 sec
Recv pktrate : 99.989 pkt/sec
Recv data rate :31.998 kbps

Pkts dropped : 0

Ave. Pkt Delay :0.002499 sec

Max. Pkt Delay : 0.052467 sec

Min. Pkt Delay : 0.002382 sec
Delay variation : 0.050085 sec

42

4.2 Test Analysis

Generally small packets travels faster through a network than big packets because of
smaller amount of memory proceeded from program to kernel and less switching time
when travelling, but on the other hand risk for packet losses is much higher for small
packets. Packet delay times and losses are proportional to utilization of IP network
recourses because different data flows interfere each other and have to share same
network resources. In overall difference between packet delay times between big and
small packets is small, less packet losses and bigger amount of payload data makes

big packet size much better to use when sending data.

Results obtained after Performing of OWAMP-Tests shows that implementation of
OWAMP draft was successful. In this case results show logical difference in travel
time needed for packets with different sizes (smaller packets travels faster) to travel
from one point to another in IP network. As expected utilization of background traffic
has resulted in higher average One-Way packet delay time regardless of test packet

size. (See figure nr. 19)

One=Hay delay distribution

5.0
e T e e o e o e oy e g e e]
el e e]

" 3

< 10,07 | ramm

-

H §.39

-

(-]

*® s
5.04
3.35
1.68

KETHETER

] Eig Packet Without Background traffic
L] BEig Packet With Background traffic

Figure nr. 19 comparing Delay times for Big packets with and without Background
traffic without

43

S5 Economical Analysis

This chapter gives overview about proximate total economical cost for whole project

including specified amount of working hours spent working with various tasks, the

other part that was included in analyses is cost for equipment that was used during the

project

5.1 Implementation cost

Implementation of the program is made in several different stages (see figure nr. 20).

Contend of each one of the stages and proximate number of working hours needed for

accomplishing them is shown below. During the project, help of an analyst was

required, which was also added to the total cost.

o Phase 1: Analysing different issues and features of Linux(Red Hat) OS-

environment

e Phase 2: Studding OWAMP - document in order to get the complete overview

on protocol and planning the implementation.

o Phase 3: Implementing of different logical parts which are included in the

OWAMP-Protocol.

o Phase 4: Evaluating the complete program and running the test using the

actual lab equipment.

e Phase 5: Working with documentation and writing the report.

October November December January February
Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Figure nr. 20

44

People with different professions were engaged in all phases. Programmer and analyst

were working during phases 1, 2 and 3 cost for that is shown below in figure nr. 21.

Profession Hours Price per Hour Total
Programmer 400 35€ 14000 €
Analyst 60 50 € 3000 €
TOTAL 17 000 €

Figure nr. 21 showing implementation cost

5.2 Cost for program testing

After implementing the program, it was tested during phases 4 and 5 in order to insure

that implementation succeeded, cost for that is shown below in figure nr. 22.

Profession Hours Price per Hour Total
Technical support 40 45 € 1800 €
Programmer 160 35€ 5600 €
Analyst 20 50 € 1000 €
TOTAL 8400 €

Figure nr. 22 showing cost for program testing

5.3 Cost for the equipment

To implement and test program required totally three PCs. Implementation was made

using only one PC while testing required use of all three PCs.(see figure nr. 23).

Equipment Units Price per unit | Total price Time of use Cost
PC 1 600 600 5 month 83
Test PCs 2 600 1200 1 month 33
TOTAL 116

Figure nr. 23 showing cost for the equipment

45

5.4 Total cost

Total cost for human resources and I'T equipment is shown below in figure nr. 24

Element Cost
Human resources 25400 €
IT equipment 116 €

TOTAL 25516 €

Figure nr. 24 showing Total cost

46

6 Conclusions

Implementing of OWAMP draft with all of its parts went well; all planned goals that
were set up at beginning of the project are achieved. OWAMP testes made on existing
experimental network were successful where obtained results showed good program
behaviour during all of test period.

Features like encryption, authentication and Poisson sampling were left for future
work because they are not necessary for basic use of the protocol and test-performing.
Even if they were implemented and used when performing OWAMP-Tests the
obtained test results would be less accurate, because in encrypted mode both the
sequence number and the time stamp the OWAMP-Test packet are encrypted while in
authenticated mode the sequence number is encrypted and the time stamp is sent in
clear text.

That is why the sender has to fetch the time stamp, encrypt it, and send it. In
authenticated mode, the middle step is removed improving accuracy.

Even if implementation works and program is working properly, there are some could
have been done differently in order to achieve higher performance of the program. In
this case UDP Test-packets sending rate could be higher if Raw-socket were used
instead of a normal UDP socket in Session-Sender because the UDP header in Raw-
socket is hard coded while in a normal socket new UDP header is made every time a

new packet is sent which takes little processing time (delay).

6.1 Future Work

As mentioned before there are some OWAMP features that are left undone like
encryption, authentication and Poisson sampling that should be implemented, but
maybe there are more important things that could be done before that, like optimizing
of the existing program. One way of doing it is making it much faster with higher
UDP Test-Packet sending rate by using a Raw-socket. Other important work is
adapting OWAMP code in to NetMeter making it possible to configure and perform
OWAMP tests using the NetMeter, having OWAMP test option as an extra feature of
the NetMeter.

47

7 References

[1] http://www.ietf.org/internet-drafts/draft-ietf-ippm-owdp-07.txt

[2] http://searchnetworking.techtarget.com/sDefinition/0,,sid7 gci214031,00.html//IP
[3] http://www.cs.cornell.edu/boom/2003sp/Project Arch/ PCATTCPC/about1.html//T
[4] http://www.pcworld.com/reviews/article/0,aid,104693,pg,10,00.asp

[5] http://www.ccaba.upc.es/netmeter

[6] http://www.Inf.infn.it/computing/Unix/ntp/

48

8 Appendix

8.1 Time Plan

October

November

December

January

February

Week

1.2 3 4

1.2 3 4

1.2 3 4

1.2 3 4

1.2 3 4

Activities

Learning about Linux(Red Hat) OS-environment

how to install it, different useful commands, and -
some other features like patching and installing
different modules .

Studding OWAMP - document in order to get the
complete overview on protocol and planning the
structure of the C-program

Writing C-program files (5) for implementing of
different logical parts which are included by the
OWAMP-Protocol

Evaluating the complete program and running
the test using the actual lab equipment.

‘Writing the report.

8.2 Control-Client Configuration File

File name: Config.cfg

*UNAUTHENTICATED MODE = 1

Only Unauthenticated Mode Supported[1]

SERVER ADDRESS = raim.ccaba.upc.es

Server Address
SENDER ADDRESS = xarello.ccaba.upc.es
Test Sender Address

RECEIVER ADDRESS = raim.ccaba.upc.es

49

Test Receiver Address
*CONFIG_SENDER =0

Sender(send UDPport) NOT Configured By Server
*CONFIG_RECEIVER =1

Receiver(receiver UDPport) Conf By Server[1]
TEST START _TIME =9

Nr of Sec Before Test starts
SHEDULE SLOTS TIMES=1111111111

Send schedule times in microseconds
Nr_OF TEST PACKETS = 2000

Nr of Test/UDP] Packets
*Nr_ OF SHEDULE SLOTS =10

Nr of Shedule Slots[10]
*ENCRYPTED_MODE =0

Not Supported[0]
*TYPE OF SLOTS =1

Pseudo Random/[0] [Not Supported]

AND Fixed Quantity[1]
DIFF_SERVICES CODEPOINT =0

Only Best Effort Supported[0]
IP_VERSION =4

IP Version
*AUTHENTIC_MODE =0

Not Supported[0]
TEST _SENDER PORT = 3594

Sender UDP port
TEST RECEIVER PORT = 3595

Receiver UDP port
TEST PACKET SIZE = 1400

Test Packet Payload Size[Bytes]
TEST RECEIVE PACKET TIMEOUT = 8

Wait Timeout for UDP Packets[Sec]

8.3 Fetch-Client Configuration File

File name: Fetchconfig.cfg

SERVER ADDRESS = dell.ccaba.upc.es
Server to fetch result from
SEQUENCE START =0
Start packet to fetch/O=Fetch All
SEQUENCE END =0
End packet to fetch/0=Fetch All
SID =1
Session Identify Number
RESULT FILE NAME = ipv4-minsize Netmeter4000 t3.dly
File name for when saving results
NO_PACKET LOSS =1
O=Record packet losses/I=NO Record

51

8.4 The format of Request-Session message

0l&£234567%7890123455678201:234568782%01

IFVHN | Conf-Sender | Conf-Receiver

1 | MBZ |

Mumber of Achedule Zlots

Nunber of Packets

SGender Addresz (cont.) or MEZ

Receiver Addrezs

Receiwver Address (cont.) or MEZ

Padding Length

Jtart Time

I
I
I
I
I
I
I
I
I
I
I
I
I
| AID (16 octets)
I
I
I
I
I
I
I
I
I
I
I
I
I
I

52

flow-0001
Flow=0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow=0001
Flow=0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow-0001
Flow=0001
Flow=0001
Flow=0001
Flow-0001

T oo A

8.5 The format of Result File

Seq=000001
Sec=000002
Sec=000003
Seq=000004
Seg=000005
Sec=000006
Sec=000007
Seg=000005
Sec=000005
Sec=000010
Seq=000011
Sec=000012
Sec=000013
Segr000014
Seg=0000L15
Sec=000016
Sec=000017
Seg=0000LE
Sec=000015
Seq=000020
Seg=000021
Seq=000022
Seq=000023
Segr000024
Sec=000025
Sed=000026
Seq=000027
Seg=000028
Sec=000025
Seq=000030
Seg=000031
Seq=000032
Seq=000033
Seq=000034
Sec=000035
Seq=000036
Seq=000037
Seg=000038

e R

Jro-147.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
Sro»-147.
Jro-147.
Jrc-147.
3rcx147.
Jroxl47.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
3rcx147.
Jroxl47.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.
3rc-147.
Sro»-147.
Jro-147.
Jrc-147.
3rc-147.
3roc=147.
Jrc-147.

P

L 130,
. 130.
.130
.130.
L 130,
L 130.
.130
130
L 130.
.130.
L 130,
.130
. 130.
L 130,
L 130,
.130
.130.
L 130,
L 130.
.130
130
. 130.
. 130.
L 130,
.130
L 130.
.130.
L 130,
.130
.130.
L 130,
L 130.
.130
130
. 130.
L 130.
.130
130

1

169/3594
169/3594

L1658/3594

169/3594
169/3594
169/3594

.169/3594
L169/3584

169753594
169/3594
169/3594

.169/3594

1659/3594
163/3524
169/3594

. 169/3594

169/3594
169/3594
169/3594

.169/3594
L169/3584

16973594
1659/3594
163/3524

.169/3594

169/3594
169/3594
169/3594

. 169/3594

169/3594
169/3594
169/3594

.1658/3594
L169/3584

169/3594
169/3594

.169/3594
L169/3584

Tem e

Dest-192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest-192.
Dest»=192.
Dest-192.
Dest»-192.
Dest»192.
Dest=192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest»192.
Dest»192.
Dest=192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.
Dest-192.
Dest»=192.
Dest-192.
Dest»-192.
Dest-192.
Dest-=192.
Dest»-192.

L

le4d.
168,
165,
164,
lagd.
165,
164,
lagd.
165,
164,
le4d.
168,
165,
le4d.
lagd.
165,
164,
lagd.
165,
164,
lagd.
163,
165,
le4d.
168,
165,
164,
lagd.
165,
164,
lagd.
165,
164,
le4d.
168,
165,
164,
lagd.

1,

L4/3585
.4/3585
L 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
L4/3585
.4/3585
.4/3595
. 4/35895
L 4/3585
. 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
. 4/35895
.4/3585
L 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
L 4/3585
. 4/3595
.4/3595
L4/3585
.4/3585
L 4/3595
.4/3595
L 4/3585

A smEaE

TxTime>32:
TxTimex3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>x32:
TxTine>32:
TxTime>32:
TxTimex3Z:
TxTime>3Z2:
TxTimex32:
TxTime>3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>32:
TxTime>3Z2:
TxTimex32:
TxTimex3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:
TxTime>x32:
TxTine>32:
TxTime>32:
TxTimex3Z:
TxTime>x32:
TxTime>32:
TxTime>3Z:

L PR

L003314
013612
023483
.033503
. 043506
053503
063502
073508
083509
.093507
L103511
. 113539
123512
133511
. 143512
. 153510
- 163520
173514
. 183512
. 193515
L 203518
. 213514
. 223521
L 233517
. 243529
253521
. 263567
L 273524
. 283530
. 293550
L 303534
. 313528
.323531
. 333528
. 343529
. 353530
. 363532
L 373534

e s

PxTinex32:
PxTinex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTinex32:
PxTinex32:
PxTinex32:
PxTinex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTine>32:
PxTinex32:
PxTinex32:
PxTinex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTimex32:
PxTinex32:
PxTimex32:
PxTinex32:
PxTinex32:
PxTinex32:
PxTimex32:
PxTimex32:

L

L0L0483
L021737
L031393
.041515
L031509
L06150%9
.071509
L031507
L091510
101515
111513
121513
. 131516
L 141515
LL31518
161518
L 171519
L131520
191522
L 201522
L2l1521
L 221518
. 231524
L 241525
. 251526
L 261523
L 271572
L 281530
L291531
. 301553
L 3115339
L 321537
. 331539
. 341536
. 351539
. 361539
. 371540
L 331541

A

53

Sizerldlo
Gizer1476
Sizex1476
Sizex1476
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Gizer1476
Sizex1476
Sizexldlc
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Sizer1476
Sizex1476
Sizexldlc
Gizer1476
Sizex1476
Sizex1476
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Sizex1476
Sizex1476
Sizerldlo
Gizer1476
Sizex1476
Sizex1476
Sizerldlo

Mr_arams

