
Automatic detection of parallel applications
computation phases?

Juan Gonzalez, Judit Gimenez and Jesus Labarta

Barcelona Supercomputing Center - Universistat Politècnica de Catalunya
Barcelona, Spain

{juan.gonzalez, judit.gimenez, jesus.labarta}@bsc.es

Abstract. Analyzing parallel programs has become increasingly di�-
cult due to the immense amount of information collected on large sys-
tems. The use of clustering techniques has been proposed to analyze
applications. However, while the objective of previous works is focused
on identifying groups of processes with similar characteristics, we target
a much �ner granularity in the application behavior.
In this paper, we present a tool that automatically characterizes the dif-
ferent computation regions between communication primitives in message-
passing applications. This study shows how some of the clustering algo-
rithms which may be applicable at a coarse grain are no longer adequate
at this level. Density-based clustering algorithms applied to the perfor-
mance counters o�ered by modern processors are more appropriate in
this context. This tool automatically generates accurate displays of the
structure of the application as well as detailed reports on a broad range
of metrics for each individual region detected.

1 Introduction
Nowadays, parallel applications are able to run with ever-growing number of
processes. In terms of analysis, bigger applications demand ever more complex-
ity of the analysis task. This di�culty comes from the huge amount of data to
evaluate: high number of processes, high numbers performance metrics, etc. An
interesting way to identify the most important information is to use data min-
ing techniques. We have chosen clustering because it is a simple but powerful
technique which summarizes the di�erent information available to analyze the
performance of these applications.

In previous studies, [14,12,2,7], clustering has been used in coarse grain sce-
narios. Basically, in these works, the authors try to summarize global information
extracted during the execution of parallel applications, in order to group those
processors which demonstrate similar behavior. The work done in [15] is totally
di�erent: the authors use clustering algorithms to detect di�erent phases of ap-
plications, using lowest-level statistics regarding the use of basic blocks as input
data.
? This work has been supported by the Ministry of Education of Spain under grant
BES-2005-7919 and the IBM/BSC Mare Incognito project

In this paper, we present an intermediate approach. Our goal is to use clus-
tering techniques in order to outline the di�erent trends of the CPU computation
areas of parallel applications. In a message-passing parallel application, we con-
sider a CPU computation area (or CPU burst) to be the region between two
consecutive communications, for any given task. Each CPU burst is character-
ized by its duration and a set of performance counters. We consider that this is a
much �ner characterization of the applications than the ones used in [14,12,2,7]
but coarser than the characterization done in [15] and it is a valuable aid to the
developer during the performance analysis stage.

Summarizing, the main contribution of this paper is the application of
clustering techniques to automatically detect parallel applications struc-
ture. Applying clustering algorithms over performance hardware counters allow
us to detect the di�erent sections or phases that characterize a message-passing
parallel application. This is a useful method to provide the developer a space-
temporal structural description of his application with statistical summaries of
performance metrics for the di�erent regions identi�ed. With these summaries
the developer can quickly distinguish the regions which su�er bad sequential
performance.

The rest of the paper is organized as follows: Section 2 presents the envi-
ronment where this study was carried out. Section 3 shows the details about
the data used in this study, as well as the pre-processing techniques applied to
this data. In Section 4 the clustering algorithms used to detect the application
structure is described. Finally, Section 5 shows the experimental validation of
the proposed techniques.

1.1 Related work
Nickolayev et al. [12], based on [14], propose the application of clustering tech-
niques in real-time analysis. In their paper the classic K-means algorithm is used
to aggregate the analysis data extracted on each processor during the program
execution. Ahn and Vetter [2] propose the use of hierarchical clustering and K-
means clustering. Principal Components Analysis (PCA) and F-Ratio analysis
is also used in this study to reduce the dimensionality of the collected data. In
both works, the summarized data always tries to di�erentiate the behavior of the
processes of a parallel application, i.e. separate master and worker threads/tasks.
The main di�erence between them is the collected data itself: in [12] high level
metrics such as processor idle or running times are used and in [2] the metrics
used are the processor performance counters. Another important di�erence be-
tween these studies is data acquisition: while in [12] the metrics are read every a
certain time t, in [2] source code is manually bracketed with directives to perform
the performance counters read.

In [7], Huck et al. describe a framework called PerfExplorer integrated with
the performance analysis database PerfDMF. The aim of this framework is to
develop data mining algorithms in order to extract useful information from the
large amount of performance data. This data is stored in PerfDMF, and includes
a huge range of metrics from high level (such as idle or running times) to low
level (such as performance counters metrics), extracted for every application

2

subroutine. In addition, the database can handle di�erent experiments for a given
application (for example, executions with di�erent number of processors). The
algorithms evaluated to show the potential of PerfExplorer are essentially the
same as those used in the other works, namely: K-means, hierarchical clustering
and PCA analysis.

Sherwood et al. [15] developed an approach similar to the work presented
in this paper but in a much �ner level of granularity. In this study, the author
applies clustering (concretely, K-means) to capture the similarity between Basic
Block Vectors (BBV). The BBVs contain the count of how many times a basic
block of the whole program has been executed during an interval of 100 million
instructions. The similarity measure is based on the distance (Manhattan or
Euclidean) between BBVs. This study demonstrates how the K-means clustering
algorithm is able to detect di�erent phases in sequential applications, such as
those present in the SPEC2000 benchmark.

2 Clustering framework

The present study was carried out using the CEPBA-Tools [1] suite, a set of
trace-based tools which focus on the analysis of parallel applications. The most
important tools in this suite are the Paraver trace analyzer and the Dimemas
trace-driven simulator. Although both tools use di�erent traces, they can easily
inter-operate, generating input traces for each other. The MPItrace library is
used to obtain the application trace. This tracing library is able to intercept
MPI calls. In addition, the library can read the values of the selected performance
counters and shift between di�erent counters groups using the PAPI library 1.

As a result of this study, we developed a tool that performs the computation
structure detection. This tool has two inputs, the Dimemas trace with the ap-
plication information to be analyzed and a XML document where the clustering
process and the data pre-processing are de�ned. As can be seen in the Figure,
the tool produces three di�erent outputs: 1) the Dimemas trace where every
CPU burst is labeled with the cluster to whom it belongs to, 2) a GNUPlot
script that shows a scatter plot with two of the metrics used in the clustering
process; 3) a report �le with relevant cluster metrics and a counter extrapolation
(not explained in this paper) per cluster, when the trace contains the required
counter information.

Clustering can be applied in other scenarios, as in [12] where it is applied
during program execution, but we have selected a trace-based scenario because it
provides a mechanism to check the suitability and the results obtained applying
di�erent clustering algorithms: the trace contains the whole information needed
by the algorithms to compute the clusters; is easy to add the cluster information
back to the original trace; and, last but not least, the results can be graphically
displayed over the time-line for a qualitative evaluation.

1 http://icl.cs.utk.edu/papi/

3

(a) Resulting clusters for CPMD

(b) CPMD with 64 Tasks

(c) Resulting clusters for VAC

(d) VAC with 128 Tasks

Fig. 1. Results of structure detection using DBSCAN clustering al-
gorithm for the applications CPMD, (a) and (b), and VAC, (b) and
(d). The algorithm was applied to Completed Instructions and IPC.
The clustering algorithm has been able to correctly detect the SPMD
structure of the applications. The section inside the red box in (b)
shows the ability of clustering to also detect an unbalanced region.

2.1 Analyzed applications

The message-passing parallel applications used in our experiments and presented
in this paper are:

Car-Parinello Molecular Dynamics (CPMD) [8]. The CPMD code is a
parallelized plane wave / pseudopotential implementation of Density Func-
tional Theory, particularly designed for ab-initio molecular dynamics.

Versatile Advection Code (VAC) [18]. The Versatile Advection Code is a
general tool for solving hydrodynamical and magnetohydrodynamical prob-
lems arising in astrophysics.

NAS Parallel Benchmarks (NPB) BT [4]. One of the well-known NAS Par-
allel Benchmarks that computes a �nite di�erence solution to the 3D com-
pressible Navier-Stokes equations. In the experiments, we used the class A
variant of this benchmark.

4

(a) Scatter plot of resulting clusters

(b) Paraver time-line

(c) Scatter plot of resulting clusters

(d) Paraver time-line

Fig. 2. Di�erent clusterings of NPB BT class A Benchmark using DB-
SCAN clustering algorithm over Completed Instructions and IPC.
Figures (a) and (b) show a �ner detail of application structure due to
the lower value of Eps. In Figures (c) and (d) the higher value of Eps
show a coarser phase detection.

Weather Research Forecast (WRF) Model [11]. WRF is a mesoscale nu-
merical weather prediction system designed to serve both operational fore-
casting and atmospheric research needs. In the experiments, we used the
non-hydrostatic mesoscale model (WRF-NMM) [10] dynamical core.

Spanish Initiative for Electronic Simulations with Thousands of Atoms
(SIESTA) [16]. SIESTA is both a method and its computer program imple-
mentation, to perform electronic structure calculations and ab initio molec-
ular dynamics simulations of molecules and solids.

3 Input data
The data used to characterize the application is the hardware counters provided
by modern processors. The performance counters are read when each CPU burst
�nishes, in other words, just before a communication is executed. In our tests
we used the IBM PowerPC R© 970MP processor. In this processor up to 8 dif-
ferent counters can be read simultaneously. However, the processor design [9]

5

�xes the combinations of the counters that can be read at the same time. Unless
otherwise stated, the counters used in the experiments were: Processor Cycles,
Completed Instructions, Dispatched Instructions, Data Loaded From Memory,
L1 Data Cache Load Miss, Global Completion Table Empty Cycles, Store In-
structions and Load Instructions.

3.1 Data pre-processing

Data pre-processing is the �rst step to reduce the volume of the clustering algo-
rithm input data. We applied two di�erent techniques: �rst, �ltering CPU bursts
with small durations, and, second, data normalization.

Filtering. Filtering simply consists of discarding those bursts whose duration
is negligible in the application execution. In this way, a vast amount of
irrelevant data is directly discarded when applying the clustering algorithm.
In the applications tested, the �ltering process has been able to discard up
to 80% of processed bursts maintaining the 99% of application time.

Normalization. Normalization is applied in order to ensure that when us-
ing counters with di�erent data ranges, none of them bias the clustering
results. Two di�erent normalizations methods are used. First, logarithmic
normalization is used when the dynamic range of the performance metric
is large. Reducing this dynamic range guarantees that the results of clus-
tering are not displaced to the higher values of a counter. Additionally,
range normalization, simply scaling the data to [0, 1] range (∀ai ∈ A, ai ←
(ai −min(A))/(max(A)−min(A))), ensures that all factors have a similar
weight in the multi-dimensional clustering

3.2 Dimensionality reduction

A common problem when applying clustering algorithms is related to the dimen-
sionality of the data. With the performance counters data we have 8 di�erent
counters for each CPU burst. Our proposal to address this problem is to re-
duce the dimensionality by selecting counters or derived metrics with "physical"
meaning to the analyst. In our experiments, two di�erent groups of the available
metrics were used:

� Processor Cycles combined with IPC. This combination focuses the cluster-
ing on the �performance view� of the application.

� Completed Instructions , L1 and L2 cache misses. This combination re�ects
the impact of the architecture on the application structure, via the cache
misses counters.

These two combinations are useful to detect regions with di�erent computational
complexity (Instructions Completed), and at the same time to di�erentiate be-
tween regions with the same complexity but di�erent performance.

In [2] and [7], Principal Components Analysis (PCA) is used to reduce the
dimensionality of the data. Using PCA, the dimensions are reduced by creating a

6

new space with a lower number of dimensions, that are the principal components
of the original data. Then each point is projected to this new space, and the
clustering algorithm is applied to the transformed set of points. This technique
succeeds in reducing the dimensionality, as an aid to the clustering algorithm. In
our experiments, we tested this technique obtaining similar results to our manual
selection of attributes. We conclude that using PCA is not strictly necessary in
this scenario because it adds no signi�cant bene�ts in the clustering results.

4 Density-based algorithms and DBSCAN

From the wide variety of algorithms ([5,19]), we initially looked at X-means
[13] (a simple improvement over K-means that approximates the value of k). K-
means-like algorithms always suppose a Gaussian model of the data. However,
the performance hardware counters data is not distributed following this Gaus-
sian model so we had to use another kind of clustering algorithms. We choose
density-based clustering as the best way to reach our goal. The main point of
these clustering algorithms is that they do not make any assumption about the
data structure or model. They try to group points into the space where their den-
sity is big enough to be considered as a real cluster. In addition, these algorithms
are robust against outliers and noise.

The selected algorithm was DBSCAN [6]. It is a simple approach to density-
based clustering and easily incorporates the bene�ts of this family of clustering
algorithms. The input of DBSCAN are two parameters, the radius Epsilon (Eps)
and minimum number of points (MinPoints) plus the data itself. The resulting
clusters obtained are those subsets Ci of the data that ful�ll the following2:

1. For any given pair of points p ∈ Ci and q ∈ Ci it is possible to �nd a set of
points a1, a2, ..., an−1, an ∈ Ci, being p = a1 and q = an, where the Euclidean
distance for each pair ai, ai+1 is less or equal to Eps. This property is called
density reachability.

2. |Ci| ≥MinPoints. This is the minimum density condition to consider Ci as
a cluster.

The technique applied for parameter selection is also described in [6] and it
consists of generating a histogram with the sorted k-neighbor distance, being k
the desired value of MinPoints. Then this distance is sorted (descending) and
plotted. The histogram will show a descending curve. In [6], the authors suggest
that the optimum value of Eps is the distance where the curve makes its �rst
in�exion (or "valley"). The points located on the left of this "valley" will be
noise in the resulting partition and the rest will be present on one cluster. In [6],
the authors ensure that choosing 4 as the default value of MinPoints produces
the best results in 2-dimensional clusterings. In our experiments higher values,
usually 10, obtained a better characterization of applications structure.
2 These de�nitions are not exactly the same as those found in [6], but easily show the
algorithm basis

7

4.1 DBSCAN suitability

Figure 3 shows the result of applying X-means and DBSCAN to the same trace,
a section of CPMD with 128 tasks, using L1 vs. L2 cache misses. The scatter
plots show some clouds of points that have a spherical shape, but others can
be elliptical with di�erent principal component directions. In this case, X-means
tends to partition the ellipses. The red box marks a region with a strong vertical
component where X-means, 3(a), detected two clusters, but DBSCAN, 3(b),
detected only one cluster. The blue box shows another equivalent region where
X-means also detected two clusters and DBSCAN only one, in this case having
a strong horizontal component. We consider the homogeneous shape detection
done by DBSCAN to be better than the X-means cluster assignment. As can be
seen in next point, these isolated groups correspond to �xed regions that de�ne
the structure of the application.

4.2 Clustering results

Figures 1 and 2 present the results of four di�erent clusterizations obtained for
the applications CPMD and VAC and the NPB BT benchmark. These Figures
serve as example of how DBSCAN is able to detect the application structure in
di�erent ways.

In Figure 1, the algorithm was applied using Completed Instructions and
IPC to CPMD and VAC. The scatter plots, 1(a) and 1(c), in both cases show a
good detection of the di�erent groups. Figures 1(b) and 1(d) are the time-line
reconstruction of each application. In these time-lines the y axis represent the
parallel tasks (or processors) and the time evolution on the x axis. The color
represent which cluster is executed by each task in a given point of time. These
Figures con�rm that the repetitive structure of this SPMD applications were
detected correctly. In Figure 1(d), the red box marks a region where some tasks
were assigned to a di�erent cluster than the general trend. This example shows
the ability of DBSCAN to detect potential unbalanced regions in terms of the
clustering dimensions.

Figure 2 shows two di�erent clusterings of NPB BT class A benchmark,
with 64 tasks. Figures 2(a) and 2(b) present the results using a small value of
Epsilon (0.0014). In this case the number of obtained clusters is high, as can be
seen in 2(a). Figure 2(b) shows how the application structure is detected in �ne
detail: for example, we can observe a staggered computation pattern (similar to
a pipeline) between di�erent tasks.

The clustering shown in Figures 2(c) and 2(d) presents a di�erent approach.
Using a higher Epsilon value (0.0400) we obtained a small number of clusters.
In this case, the time-line, 2(d), shows the detected application structure at
a coarser granularity, and the typical SPMD structure appears. As a whole,
Figure 2 shows how di�erent levels of detail can be obtained. This hierarchical
characterization of a program is highly interesting from the performance analyst
point of view.

8

(a) X-Means Resulting Clusters (b) DBSCAN Resulting Clusters

Fig. 3. X-means and DBSCAN algorithms comparison. Red and blue
boxes remark clouds of points with strong components, vertical and
horizontal, where X-means has divided the isolated group.

4.3 Clustering quality evaluation

In previous studies in this area, the output of the clustering algorithm applied is
assumed to be correct, and no other analysis of the clusters is done. The quality
of the clustering is assessed informally by checking that it displays some of the
expected di�erences between processes. An exception is found in [15]. where
the authors use the Bayesian Information Criterion (BIC), as is de�ned in the
X-means algorithm [13], to evaluate the quality of the clustering results. This
measure is closely related to the assumption of a Gaussian model of the clusters.

Due to the no data structure assumption of density-based clustering algo-
rithms, the most common method to evaluate the clustering results is the �expert
criterion� [3] (also known as gold standard [17]). This method simply consists in
comparing the partition made by the clustering algorithm with a decomposition
of the data made by an expert. We provide three complementary methods to
perform the �expert validation� to check the quality of the resulting clusters:

1. Using the GNUPlot scatter plot to examine the cluster assigned to each point
as a result of a good clustering, the scatter plot would show that isolated
groups of points are detected as di�erent clusters.

2. If the application is purely SPMD, we would expect the Paraver time-line
to show that all processes execute the same cluster at the same time. In
addition, we expect to �nd a repetitive pattern among clusters in the time-
line, due to the common iterative structure of parallel codes.

3. If the original trace includes code linkage (user added events or back-traced
caller events on MPI calls), a good clustering should show that every cluster
region corresponds to a �xed sections of code.

9

WRF SIESTA CPMD VAC NPB BT

Input Trace Size 118MB 67MB 91MB 53MB 69MB
Clustering Running Time 30.237s 1m 30.31s 51m 7.79s 1m 38.00s 12m 26.16s

Processed Bursts 13,917 11,234 53,454 25,733 24,850
Filter Threshold 1000µs 1000µs 5000µs 1000µs 500µs

% Bursts Discarded 88.70% 83.74% 34.03% 50.24% 64.26%
% Application Time Discarded 0.44% 0.33% 7.28% 0.08% 1.10%

Clusters found 23 23 16 22 9
Clusters with >10% of total time 3 3 2 2 3

Table 1. Clustering tool statistics for the applications used in this
paper. The values regarding the NPB BT benchmark correspond to
the execution with higher value of Epsilon.

5 Performance analysis experiments

Complementing the clustering results presented in Section 4.2, in this Section we
present a deeper analysis of the clustering results for the applications WRF and
SIESTA. These results are detailed in two di�erent parts: Results validation,
where we answer the question �is this clustering correct?�; and Analysis, where
we answer the question �which information does the clustering provide?�.

Table 1 shows an overview with some statistics of the clustering tool execution
for the applications analyzed in this paper. The �rst fact to mention about this
table is the high running time variability, from seconds to nearly an hour. This
is caused by the sensitivity of DBSCAN to the data distribution as well as the
input parameters. Another interesting fact presented on the table is the bene�t
of �ltering stage, especially in WRF and SIESTA, where applying a 1000µs �lter
threshold we discarded up to the 88% of bursts in the trace, retaining 99% of
the application total time.

We want to note that in the reports obtained by collecting the results of
clustering application, Figures 4 and 5, only clusters that are interesting in the
analysis process are shown, usually those which take up the biggest amount of
application time.

5.1 WRF

The trace used in this analysis was extracted in an execution with 64 MPI tasks.
The clustering report shown in Figure 4 was obtained after applying DBSCAN
using Completed Instructions, L1 data cache misses and L2 data cache misses as
clustering dimensions, with the parameters Eps = 0.0083 and MinPoints = 10.

Results validation. The time-line of four WRF internal time-steps, 4(a),
shows clusters uniformly distributed along the program execution, as well as,
the repetitive pattern of the application. In the 2D scatter plot of Completed
Instructions vs. L1 data cache misses, 4(b), di�erent groups were correctly as-

10

signed to di�erent clusters. The actual separation between Clusters 1, 2 and 3
comes from the third variable used in the clustering, L2 data cache misses.

Table 4(c) shows an interesting result of this clustering: the correspondence of
the four major clusters and the source code of the application, obtained with the
back-trace information on each MPI library entry point. This table re�ects that
each cluster corresponds to 1 or 2 di�erent regions of code, as we expected. In
this experiment we found a good example regarding to the ability of clustering to
detect the application structure. In Figure 4(a), vertical dotted lines are group-
ing Clusters 5 and 6, which only appear every two time-steps of the execution.
Via the code correlation, Table 4(c), we checked that, e�ectively, the clusters cor-
respond to two subroutines only executed on even time-steps (in detail, Cluster
5 corresponds to vertical passive advections and Cluster 6 to horizontal passive
advections).

Analysis. Using the cluster statistics table, 4(d), the analyst could be fo-
cused on Clusters 1 and 2. These clusters take up the 55% of application execu-
tion time and their IPC is 0.53 and 0.50. In both cases, the values of L1 cache
misses per 1000 instructions are high, 22.72 in Cluster 1 and 32.63 in Cluster
2. With this information, the data access pattern seems to be the main factor
causing the degradation of the performance of these clusters. Comparing Clus-
ters 1 to 4 we can see how similar L2 miss rates obtain di�erent IPC depending
on L1 miss ratio.

5.2 SIESTA
For this experiment, the SIESTA trace used was also obtained from an execution
with 64 tasks. Figure 5 summarizes the results. With the collaboration of the
application developers, we marked the source code with entry and exit events
of main subroutines. In this experiment we used Completed Instructions and
IPC metrics as DBSCAN input. The parameters used were Eps = 0.0151 and
MinPoints = 10.

Results validation. The scatter plot, 5(b), shows a correct detection of
isolated clouds as di�erent clusters. Furthermore, it was able to even detect
di�erent groups having di�erent components, as Cluster 3, which has a strong
horizontal component (steady number of Completed Instructions and variable
IPC) and Cluster 4, which has a strong vertical component (steady IPC but
variable number of Completed Instructions.

In Figure 5(a) Window 1 shows the cluster information and Window 2 shows
the subroutine information obtained using the manually added events. This Fig-
ure demonstrates how clustering detected exactly the most important routines in
SIESTA code. Subroutines rhoofd, vmat and cellxc were detected as Cluster 2,
Cluster 3 and Cluster 5, respectively. In compute_dm subroutine, the clustering
detected two phases: an initial corresponding to Cluster 1 and a small region
at the end of the subroutine, corresponding to Cluster 4. This detection was
con�rmed by the developers: compute_dm has an initial region of computation
and �nishes with a communication period where di�erent tasks share the data.

Analysis. This application shows a slightly better results than WRF, in
terms of IPC. Table 5(c) points out that Cluster 1 has the lower IPC (0.65).

11

This score As in the previous example, this low IPC shows to be related to the
memory: Cluster 1has the highest values of L1 misses and Memory Bandwidth.
In addition, it has the the second higher value of MFLOPS. The subroutine
compute_dm, which corresponds to Cluster 1, solves an eigenvalues equation and
intensively uses a sparse matrix, with indirect access to values, causing the de-
tected memory behavior.

6 Conclusions and future work

This paper presented the suitability of DBSCAN [6] based on performance coun-
ters to characterize the internal structure of message-passing applications. Fur-
thermore, we demonstrated the inability of other clustering algorithms such as
K-means or AHT used in previous works [12,2,7].

The experiments performed with the applications NPB BT, CPMD, VAC,
WRF-NMM and SIESTA, validate how our clustering technique is able to cor-
rectly detect di�erent algorithm phases as well as regions of di�erent subrou-
tines with similar behavior. In addition, the experiments show the potential of
the clustering, combined with other analysis tools such as Paraver, to help the
analyst/developer in their work, focusing on a better understanding of the com-
putation regions.

The �rst application of the structure detection we did was counter extrap-
olation. Due to page limitation, this technique is not shown in this paper. It
simply consists on read di�erent counters groups during the execution. Having
these groups a common subset of counters, we apply the clustering algorithm to
the common subset and extrapolate the value for the rest of counters for each
cluster.

We are currently using clustering to automatically identify the most repre-
sentative regions to be traced and simulated at instruction level. This simulation
is done in order to evaluate the micro-architectural impact on the whole parallel
application. Also related to performance prediction, our research is now oriented
to applying the information provided by DBSCAN so as to make more precise
performance predictions. The memory characterization provided by clustering
(cache misses and bandwidth consumptions) will be used in Dimemas [1] to
accurately simulate CPU bursts.

Furthermore, we are going to apply this automatic structure detection during
the application execution, in order to obtain di�erent �on-line� characterizations.

7 References
1. CEPBA-Tools Team@BSC Home, http://www.bsc.es/plantillaF.php?cat_id=52.
2. D. H. Ahn and J. S. Vetter, Scalable analysis techniques for microprocessor perfor-

mance counter metrics, SC '02: Proceedings of the 2002 ACM/IEEE conference on
Supercomputing (Los Alamitos, CA, USA), IEEE Computer Society Press, 2002,
pp. 1�16.

3. Nicolas Anquetil, Cédric Fourrier, and Timothy C. Lethbridge, Experiments with
clustering as a software remodularization method, WCRE '99: Proceedings of the

12

Sixth Working Conference on Reverse Engineering (Washington, DC, USA), IEEE
Computer Society, 1999, p. 235.

4. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R.Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga, The NAS Parallel Benchmarks, Tech. Report RNR-
94-007, NASA Advanced Supercomputing (NAS) Division, 1994.

5. P. Berkhin, Survey Of Clustering Data Mining Techniques, Tech. report, Accrue
Software, San Jose, CA, 2002.

6. M. Ester, Hans P. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise, Second Interna-
tional Conference on Knowledge Discovery and Data Mining (Portland, Oregon)
(Evangelos Simoudis, Jiawei Han, and Usama Fayyad, eds.), AAAI Press, 1996,
pp. 226�231.

7. K. A. Huck and A. D. Malony, PerfExplorer: A Performance Data Mining
Framework For Large-Scale Parallel Computing, SC '05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing (Washington, DC, USA), IEEE Com-
puter Society, 2005, p. 41.

8. J. Hutter and A. Curioni, Car-Parrinello Molecular Dynamics on Massively Par-
allel Computers, ChemPhysChem 6 (2005), 1788�1793.

9. IBM Systems and Technology Group, IBM PowerPC 970MP RISC Microprocessor.
User's Manual, March 2007, Version 2.2.

10. Z. I. Janjic, Jr. J. P. Gerrity, and S. Nickovic, An Alternative Approach to Nonhy-
drostatic Modeling, Monthly Weather Review 129 (2001), 1164�1178.

11. J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and
W. Wang, The Weather Reseach and Forecast Model: Software Architecture and
Performance, Proceedings of the 11th ECMWF Workshop on the Use of High
Performance Computing In Meteorology (Reading, UK), 25 - 29 October 2004
2004.

12. O. Y. Nickolayev, P. C. Roth, and D. A. Reed, Real-Time Statistical Clustering for
Event Trace Reduction, The International Journal of Supercomputer Applications
and High Performance Computing 11 (1997), no. 2, 144�159.

13. D. Pelleg and A. W. Moore, X-means: Extending K-means with E�cient Esti-
mation of the Number of Clusters, ICML '00: Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (San Francisco, CA, USA), Morgan
Kaufmann Publishers Inc., 2000, pp. 727�734.

14. P. C. Roth, ETRUSCA: Event Trace Reduction Using Statistical Data Clustering
Analysis, Master's thesis, University of Illinois at Urbana-Champaign, 1996.

15. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, Automatically characteriz-
ing large scale program behavior, ASPLOS-X: Proceedings of the 10th international
conference on Architectural support for programming languages and operating sys-
tems (New York, NY, USA), ACM Press, 2002, pp. 45�57.

16. José M. Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera,
Pablo Ordejón, and Daniel Sánchez-Portal, The SIESTA method for ab initio order-
N materials simulation, Journal of Physics: Condensed Matter 14 (2002), 2745.

17. P. Tonella, F. Ricca, E. Pianta, and C. Girardi, Evaluation methods for web ap-
plication clustering, Fifth IEEE International Workshop on Web Site Evolution,
2003, 2003, pp. 33�40.

18. Gábor Tóth, Versatile advection code, HPCN Europe '97: Proceedings of the In-
ternational Conference and Exhibition on High-Performance Computing and Net-
working (London, UK), Springer-Verlag, 1997, pp. 253�262.

19. R. Xu and D. Wunsch II, Survey of clustering algorithms, IEEE Transactions on
Neural Networks 16 (2005), 645�678.

13

(a) 4 iterations time-line reconstruction with cluster identi�cators

(b) Scatter plot of resulting clusters

Cluster Code Section

1 solve_nmm.f:[2037 - 2310]

2 solve_nmm.f:[1478 - 1782]

solve_nmm.f:[2030 - 1782]

3 solve_nmm.f:[1241 - 1345]

4 solve_nmm.f:[2771 - 2865]

solve_nmm.f:[2388 - 2489]

5 solve_nmm.f:[1478 - 1569]

6 solve_nmm.f:[1607 - 1633]

(c) Application code regions for each
cluster

Cluster 1 2 3 4 5 6
% Time 36.29 29.52 10.13 9.68 3.73 1.71

Avg. Burst Dur. (ms) 220.46 177.70 60.81 29.09 38.71 44.83
IPC 0.53 0.50 0.62 0.77 0.66 0.59

MIPS 1210.07 1164.36 1403.19 1743.32 1499.47 1338.24
L1M/KInstr 22.72 32.63 12.65 8.39 16.12 6.86
L2M/KInstr 0.59 1.23 1.08 0.61 1.23 1.73

Mem.BW (MB/s) 90.77 182.65 193.32 136.33 236.15 295.71
(d) Individual cluster statistics

Fig. 4. Clustering results. WRF with 64 tasks (DBSCAN Eps = 0.0083,
MinPoints = 10)

14

(a) 2 iteration time-line reconstruction with cluster identifcators (Window 1) and SIESTA
main subroutines (Window 2)

(b) Scatter plot of resulting clusters

Cluster 1 2 3 4 5

%Time 43.37 32.07 15.81 4.92 2.20

Avg. Burst

Dur. (ms)
11,794,11 8,524.79 4,201.32 39.22 584.35

IPC 0.65 0.73 0.80 0.98 0.72

MIPS 1460.45 1646.31 1805.65 2221.26 1621.42

MFLOPS 307.45 80.96 113.20 160.32 328.51

L1M/KInstr 11.23 1.07 1.38 3.00 8.77

L2M/KInstr 0.220 0.010 0.033 0.050 0.001

Mem.BW

(MB/s)
41.21 2.03 7.68 14.22 0.29

(c) Individual cluster statistics

Fig. 5. Clustering results. SIESTA with 64 tasks (DBSCAN Eps =
0.0151, MinPoints = 10)

15

