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ABSTRACT

Transactional Memory is a promising parallel programming
model that addresses the programmability issues of lock-
based applications using mechanisms that are transparent
to developers. Hardware Transactional Memory (HTM) im-
plements these mechanisms in silicon to obtain better results
than fine-grain locking solutions. One of these mechanisms
is data version management, that decides how and where
the modifications introduced by transactions are stored to
guarantee their atomicity and durability.

In this paper, we show that aborts are frequent especially
for applications with coarse-grain transactions and many
threads, and that this severely restricts the scalability of
log-based HTMs. To address this issue, we propose the use
of a gated store buffer to accelerate eager version manage-
ment for log-based HTM. Moreover, we propose a novel de-
sign, where the store buffer is used to perform lazy version
management (similar to Rock [12]) but overflowed transac-
tions execute with a fallback log-based HTM that uses eager
version management.

Assuming an infinite store buffer, we show that lazy ver-
sion management is better suited to applications with fine-
grain transactions while eager version management is better
suited to applications with coarse-grain transactions. Lim-
iting the buffer size to 32 entries, we obtain 20.1% aver-
age improvement over log-based HTM for applications with
fine-grain transactions (using lazy version management) and
54.7% for applications with coarse-grain transactions (using
eager version management).
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1. INTRODUCTION

Transactional Memory (TM) [8] provides an alternative,
lock-free, parallel programming model that provides non-
blocking synchronization among transactions. A transaction
is a sequence of reads and writes on shared memory data
that can be safely executed in parallel with the rest of the
program. Similar to database transactions, TM defines the
execution of a transaction to be atomic, isolated, durable
and consistent. Hardware Transaction Memory (HTM) [1, 7,
8, 14] proposes to utilize specialized hardware to accelerate
the underlying mechanisms of transactional execution.

Previous studies [6] claimed that common-case transac-
tions were short and did not usually conflict, suggesting
simple recovery mechanisms to resolve conflicts [14, 21].
However, more recent transactional workloads [5] have in-
troduced large transactions that access different data struc-
tures concurrently, which generates contention and produces
unwanted overhead.

One of the underlying mechanisms of TM is version man-
agement. Version management defines (1) where (and how)
are the transactional and pre-transactional states stored, (2)
how the state is updated at commit, and (3) how the state is
updated at abort and recovery. There are two major policies
and each can be implemented using different techniques [4].
In this paper we analyze the impact of version management
policies in an HTM environment.

Lazy version management does not make memory updates
from a transaction visible to other threads. This is done
either by storing the new values in different memory loca-
tions or by using special buffering to temporarily hold the
new data. On commit, the new values must be made visi-
ble to the other threads. Eager version management on the
other hand makes updates visible immediately (but it must
maintain the pre-transaction values on the side). Commit is
immediate, but abort requires to restore the old values.

First, we characterize LogTM-SE [21], a log-based HTM
system that uses eager version management. LogTM-SE as
well as other recently proposed log-based systems [2, 3] use
hardware to accelerate conflict detection, but perform abort
recovery by software (to be able to support very big trans-
actions). Our characterization is similar to that of Titos et
al. [19], but we use a wider spectrum of benchmarks and
configurations with more cores. Our analysis shows that
abort recovery can lead to serious performance opportunity
loss for applications with coarse-grain transactions.

This motivates the use of specialized hardware to accel-
erate version management. We have decided to use a gated
store buffer similar to Crusoe™ [9] and Rock [12]. Fur-



thermore, we propose to use the buffer to implement both
eager and lazy version management. For lazy version man-
agement, transactional stores are kept in the buffer, and
are pushed to the memory hierarchy at commit. For eager
version management, pre-transactional data are put in the
buffer before transactional stores overwrite their memory lo-
cations, and are pushed to the memory hierarchy at abort.

We perform two evaluations of this design: the first as-
sumes infinite buffers and the second is a realistic imple-
mentation. Comparing LogTM-SE with the idealized eager
approach we measure the opportunity loss of unaccelerated
log-based HTM. We also analyze the differences between the
idealized eager and lazy approaches. We conclude that a lazy
policy is better suited to applications with fine-grain trans-
actions while an eager policy is better suited to applications
with coarse-grain transactions.

The issue with finite hardware is that large transactions
may overflow the buffering space. For both eager and lazy
version management we propose to utilize LogTM-SE to
handle transactions that overflow the buffer. The use of
LogTM-SE significantly simplifies previous proposals that
require complex structures to execute overflowed transac-
tions [1, 15] while outperforming classical log-based propos-
als that use software-only recovery mechanisms [2, 21]. Uti-
lizing a 32-entry store buffer, we obtain 20.1% average im-
provement over LogTM-SE for applications with fine-grain
transactions (using lazy version management) and 54.7% for
applications with coarse-grain transactions (using eager ver-
sion management).

The contributions of this paper are three-fold. First, our
characterization of LogTM-SE expands on previous work
with new benchmarks. Second, our idealized eager vs. ideal-
ized lazy version management analysis with an extensive list
of applications draws interesting conclusions about an area
largely neglected in TM studies. Third, our two proposed
implementations of hardware-accelerated version manage-
ment (eager and lazy) with a log-based HTM fallback.

The rest of the paper is organized as follows: Section 2
summarizes data version management mechanisms in cur-
rent HT'Ms. Section 3 presents in detail a baseline log-based
HTM. Section 4 discusses how the inclusion of a store buffer
can accelerate eager and lazy version management mech-
anisms and explains the implementation of our system in
the face of buffer overflows. Section 5 evaluates the various
version management techniques presented with both infinite
and finite resources, and Section 6 concludes this study.

2. RELATED WORK

Herlihy and Moss [8] introduced HTM as a new multipro-
cessor architecture intended to make lock-free mechanisms
as efficient as conventional techniques based on mutual ex-
clusion. Their design uses traditional cache management
and coherence on non-transactional operations, and provides
extra instructions for transactional accesses, commit actions
and state validation. Modifications introduced by a trans-
action were tracked in a separate processor cache that con-
tained old and new values, which could only be accessed by
the owner processor.

Transactional Coherence and Consistency (TCC) [7] pro-
posed a consistency model based on transactions. TCC uses
lazy version management: the first level caches buffer new
values locally, while a second level shared cache holds the old
values. Transactions send all their modifications to the sec-

ond level cache at commit time making the changes visible
to all processors.

Original HTM proposals posed limitations on the size or
duration of transactions. Recently, there are several pro-
posals able to execute unbounded transactions using finite
hardware. Hybrid Transactional Memory (HyTM) [10] uses
Software Transactional Memory (STM) [16] to handle large
transactions, whereas common-case, smaller transactions use
best-effort hardware. LTM [1] and VIM [15] are lazy, un-
bounded HTMs that spill transactional state into an over-
flow data structure in main memory. This technique is quite
expensive, because, if a requested line has been updated
during the transaction, the system must walk the overflow
structure to get the right value.

RTM [17] performs lazy data version management by us-
ing the buffer capabilities of private caches. RTM adds two
states (TI for reads and TMI for writes) to the MESI pro-
tocol to track the lines used by transactions and to ensure
isolation and consistency. On commit, lines in the TMI state
change to Modified, and on abort lines in TMI and TT states
change to Invalid.

Rock [12] will possibly be the first processor to include
transactional hardware support. RockTM utilizes lazy data
version management, using a finite buffer that stores trans-
actional writes at word granularity. The buffered stores
become visible to the memory system when a transaction
commits. In case of overflow, the system triggers an excep-
tion to re-execute the overflowed transaction using software
mechanisms.

LogTM [14] performs eager data version management by
storing old values and their associated addresses in a private
software log. Read-Write cache bits are used to detect con-
flicts, whereas new “sticky” directory states maintain concis-
tency for evicted transactional lines. LogTM-SE [21] decou-
ples transactional state from caches, replacing Read-Write
bits with signatures. A signature is a compact representa-
tion of a set of memory addresses. A signature supports
conflict detection efficently, but it is inexact (we may get
false positives).

Like LogTM-SE, OneTM [2] and TokenTM [3] use log-
based eager data version management, but implement dif-
ferent strategies to track the locations accessed by transac-
tions. OneTM introduces a permissions-only cache to main-
tain consistency among transactions that evict lines from
private buffers, but only allows one transaction to overflow
in this cache at a time. TokenTM adapts the concept of
token coherence to detect conflicts among transactions and
eliminate false positives produced by finite signatures.

3. LOG-BASED HTM

We have chosen LogTM-SE [21] as our log-based baseline
system for its simplicity and the large amount of literature
that it has generated. LogTM-SE is a log-based HTM with
eager version management that utilizes a software handler
to restore transactional state in case of abort.

LogTM-SE uses signatures to track the locations accessed
by transactions in order to detect conflicts. Other log-based
TM systems such as OneTM [2] and TokenTM [3] use differ-
ent hardware to detect conflicts, but are based on the same
mechanisms for logging. We believe that for the purposes
of this work (studying version management alternatives),
LogTM-SE is representative of all three systems so we will
refer to it as log-based HTM from now on. The mechanisms



that our baseline log-based HTM implements in each of its
dimensions are described in the following subsections.

3.1 \Version Management

Log-based HTMs keep a copy of older values with their
respective address in a software log, whereas transactional
modifications update memory in-place. This software log
must be initialized when a transaction begins. Each trans-
actional store must follow three steps to ensure that the new
value is in place and the old value is in the log: (1) the sys-
tem brings the cache line to the processor if it is not already
there, (2) the old data is stored in the log, and (3) the new
data is stored in the cache.

The processor has specialized hardware to support effi-
cient logging [21]. Even so, logging has a non-negligible
cost, because it requires several movements to memory. In
our system, we assume that a prefetch request with the log
address is sent at the same time the transactional store is
issued. This will bring the log entries close to the processor
and it will accelerate the logging process.

Obviously, it is not necessary to restore those memory lo-
cations that have been modified by a committed transaction.
On these occasions, the log is discarded. When a transaction
has to abort, the recovery handler is called. The recovery
handler is a software routine that walks the log in reverse or-
der to restore the memory state by undoing all transactional
memory updates.

3.2 Conflict Detection

The conflict detection mechanism permits the identifica-
tion of those transactions that access the same memory lo-
cations. LogTM-SE uses the coherence protocol to detect
conflicts and to ensure transactional isolation. Basically,
the directory that tracks which lines are modified in pri-
vate caches, forces signature checking when a remote request
needs these lines. When a transactional line is evicted from
a private cache, it is put on a sticky state in the directory,
which assigns the ownership of the line to the evicting pro-
cessor. If a sticky line is requested, the directory sends a
message to the owner to force signature checking. This fact
guarantees that all transactional requests will be checked
even though the data has been evicted from the cache.

3.3 Conflict Resolution

The conflict resolution policy determines how a conflict
is resolved, ensuring progress in the transactional execution.
After detecting a conflict between two transactions, the con-
flict resolution policy stalls the requester, who waits until
the other transaction commits. However, to avoid cycli-
cal dependencies between stalled transactions that might
produce deadlocks, transactions must inform a centralized
cycle-detector when they are stalled. If a cycle occurs a
transaction timestamp determines the younger transaction
that participates in the cycle and aborts it. After the re-
covery mechanism, a backoff is performed to avoid multiple
aborts of the same transactions.

4. ACCELERATED IMPLEMENTATIONS

One way to accelerate abort recovery is by providing spe-
cialized hardware to handle this situation, such as a fast
hardware buffer to hold the log. Another alternative is to
opt for a lazy version management solution, since in lazy
version management systems old values stay in-place.
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Figure 1: Tx Operations on Eager Implementation

We propose to use a gated store buffer, similar to Rock [12]
and Crusoe™ [9]. Our proposal allows both eager and lazy
version management policies to be implemented on the same
hardware, which allows the user to select the most appropri-
ate execution mode according to the characteristics of the
workload. For eager version management, the store buffer
holds the old (pre-transaction) values, while for lazy version
management it holds the new values (Crusoe "™and Rock
use it this way). Stores kept in the buffer are “gated”, until
commit or abort time.

For a realistic design, we must implemented a solution
that allows the execution of transactions of any size, i.e.,
even transactions that overflow the buffer. Rock proposes
to abort and re-execute overflowed transactions by software,
whereas other unbounded lazy HTMs implement complex
mechanisms to access overflowed transactional data.

We propose to use best-effort hardware for small trans-
actions and an eager log-based mechanism for overflowing
transactions in both eager and lazy version management im-
plementations. This way, our system can take advantage
of LogTM-VSE [18] techniques to survive page faults and
context switches as well.

4.1 Eager Implementation

The eager implementation stores new values in place and
the old values in the buffer. It operates identically to the log-
based implementation, but it accelerates the version man-
agement mechanism with hardware support. Figure 1 shows
how the store buffer is used to accelerate eager version man-
agement:

TxST: a transactional store sends the old data from the
L1 to the buffer and simultaneously updates the L1 with
the new data value (Figure 1b). At the same time, a CAM
search is performed in the buffer using the store address. A
match means that this address has been written before in
this transaction and the correct data is already present in
the buffer. If no match is found the old L1 data is stored in
the first free entry of the buffer.

TxLD: transactional loads work identicaly to the original
LogTM-SE proposal [21] (Figure 1a).
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Figure 2: Tx Operations on Lazy Implementation

Abort: the processor is stopped and the state is restored
by moving the old values from the buffer to the L1 using
regular memory write requests (Figure 1c). If a line has
been evicted from the L1 cache, it is brought from the lower
levels of the hierarchy. This is not a problem, because the
conflict detection mechanism guarantees that no other pro-
cessor accesses the line (the abort process must be atomic).
In our system, the cache has a single write port, so only
one request can be sent at a time. When the abort recovery
process finishes, the buffer is cleared.

Commit: all buffer entries are invalidated by flash-clearing
the valid bits (Figure 1d). No other action is required.

Overflow: When the buffer overflows, transactions have
to be recovered via the software log. In order to avoid unnec-
essary aborts, our eager implementation creates the software
log always. Hence, transactional stores place the old values
in both the store buffer and the software log. On overflow, a
special flag is asserted and the store buffer is cleared. When
a transaction aborts, the overflow flag decides if the trans-
action is recovered via hardware or software.

4.2 Lazy Implementation

The lazy implementation uses the hardware buffer to store
speculative transactional values, keeping old values in the
memory hierarchy. Hence, transactions do not modify the
program state until they commit. This means that the L1
stores pre-transactional values, allowing an immediate re-
covery in case of abort.

This scheme is similar to RockTM, which uses the store
buffer to store speculative writes [12]. Contrary to RockTM,
our system is able to accelerate unbounded transactions us-
ing the existing hardware, by falling back to eager mode for
transactions that overflow the buffer. Our approach imple-
ments the same conflict detection mechanism and conflict
resolution policy as the eager implementation.

TxST: the buffer must hold the latest version of a memory
location, while in a transaction. For this reason, a transac-
tional store first performs a CAM search for the address in
the buffer. If a match is found then the matching entry is
updated with the new data, otherwise the data is stored in
the first free entry of the buffer (Figure 2b). This opera-

tion is identical to that of a conventional store buffer in an
out-of-order processor.

TxLD: similar to a load in an out-of-order processor, the
transactional load does a CAM search with the address on
the buffer in parallel to the L1 access (Figure 2a). If a match
is found in the buffer, the data is forwarded from the buffer
(independently of a L1 hit/miss).

Abort: all buffer entries are invalidated by flash-clearing
the valid bits (Figure 2c¢). No other action is required. This
is the same as the commit action of the eager implementa-
tion.

Commit: the processor is stopped and the state is com-
mited by moving the new values from the buffer to the L1
using regular memory write requests (Figure 2d). If a line is
not in the L1 cache, it is brought from the lower levels of the
hierarchy. This is not a problem, because signatures are not
released until the commit process finishes and the conflict
detection mechanism stalls requesters of committing lines
until the commit phase finishes. When the commit process
finishes, the buffer is cleared. The commit operation of the
lazy implementation is similar to the abort operation of the
eager implementation.

Overflow: when a lazy mode transaction overflows the
buffer the following things happen: first, the buffer is cleared
(i.e., we abort the transaction), then the buffer is put in
eager mode, and last, the transaction is restarted (in eager
mode). This means that an overflowed transaction executes
using the eager implementation, as described in Section 4.1.
Notice that aborts produced by overflows do not suffer the
abort recovery penalty, because lazy version management
recovers the state immediately. The only penalty is due to
useful transactional work lost.

4.3 Discussion

Hybrid TM systems (and RockTM) recover overflowed
transactions using software. This approach is useful if over-
flows are uncommon, but presents several drawbacks when
overflows abound. First, hybrid TMs abort all the useful
work done by an overflowed transaction. Second, overflowed
transactions are executed entirely by software, which in-
creases their execution time and generates contention. Last,
HyTMs need mechanisms to guarantee isolation between
software and hardware transactions, which may delay hard-
ware transaction execution as well.

Contrary to hybrid TMs, our eager implementation does
not discard useful work generated by overflowed transac-
tions, and only aborted transactions suffer delays. In the
lazy implementation, an overflowed transaction is only abort-
ed once before re-executing in eager mode. There are cases
though that these transactions may be aborted before they
overflow the buffer, due to conflicts or other events. In such
situations, we gain performance by using the buffer. Since
our system does not use a software-only mode for overflowed
transactions (a) it does not suffer the overheads of conflict
detection among hardware and software transactions, and
(b) overflowed transactions that commit without a conflict
are accelerated.

Some lazy version management systems propose software
buffering to handle overflows [1, 15, 17]. Software buffering
is less effective for lazy version management than eager ap-
proaches: it would have to store the memory modifications of
an overflowed transaction in a virtual memory structure that
has to be accessed each time a memory location is loaded.
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Core 1.2 GHz in-order single issue
L1 cache 32 KB 4-way, 64-byte line,
write-back, 2-cycle latency

L2 cache 16 MB 8-way, banked NUCA,
write-back, 15-cycle latency
Memory 4 GB, 4 banks, 4 memory

controllers, 300-cycle latency
Bit vector of sharers, 6-cycle latency

L2 directory

Interconnect | Mesh, 64-byte links, 2-cycle wire
latency, 1-cycle router latency
Signatures 2 Kb Parallel Chuckoo-Bloom filters

Table 1: Base system parameters

Recent proposals [15] accelerate this process using Bloom
filters and look-up tables, but these techniques increment
the complexity of the mechanism. On the other hand, eager
log-based implementations offers an easy way to deal with
overflowed transactions as we have seen.

5. RESULTS

For our experiments we assume a CMP processor with 32
cores. Each core is an in-order, single-issue SPARC proces-
sor with 4-way 32 KB private L1 instruction and data caches.
The system has a mesh interconnection network that uses
64-byte links with adaptive routing. For our 32-core CMP
design we have chosen to use a 16-node mesh, where each
mesh node has two cores and a 1 MB shared L2 cache. This
is a Non-Uniform Cache Access (NUCA) system, where a
16 MB L2 cache is distributed among the cores, as shown in
Figure 3. Four memory controllers have been used to access
the DRAM banks. 2 Kbit Read-Write and Write signatures
have been used to track conflicts. Other system parameters
are described in Table 1.

The base system and the different data version manage-
ment mechanisms have been simulated using the Simics [11]
simulation infrastructure from Virtutech and the Wiscon-
sin GEMS toolset [13] to build the memory environment.
GEMS provides a LogTM-SE implementation, which we have
modified slightly to better model the latency of the stores
to the software log.

In our evaluation of the realistic eager and lazy version
management (labeled Eager Implementation and Lazy Im-
plementation), we limit the store buffer to 32 entries. For the
idealized eager and lazy version management (labeled Ideal
Eager and Ideal Lazy) we assume an infinite store buffer.

Suite Benchmark | Input parameters
ubench Btree 10% insertions, 100K trans.
Deque 5K dummy work, 100K trans.
SPLASH-2 | Barnes 512 bodies
Raytrace teapot
Bayes 16 vars, 512 records
Genome 64K seg, 512 gene length,
STAMP 32 seg. length
Kmeans 15/15 clusters, 16K points
Labyrinth 32*32*3 maze, 2048 routes
Vacation 64K entries, 4K tasks, 16 items
60% queries, 90% user

Table 2: Benchmarks and input parameters

For our analysis we use applications from the SPLASH-2
benchmark suite [20], from the STAMP benchmark suite [5],
and two microbenchmarks from the GEMS LogTM distribu-
tion. The applications and their respective input parameters
are shown in Table 2.

The ubench benchmarks in Table 2 are the LogTM mi-
crobenchmarks. Both benchmarks perform basic operations
on common data structures. They execute small transac-
tions with variable contention.

SPLASH-2 is a suite of benchmarks for multiprocessors,
where lock-protected regions have been transformed into
transactional blocks [21]. As the SPLASH-2 benchmarks
have been optimized over the years to avoid synchronization,
most of the time is spent in small, fine-grained transactions.

STAMP [5] is the first benchmark suite written explicitly
for transactional memory. The STAMP applications spend
most of the execution time inside transactions. Transac-
tions in STAMP are coarse-grain and operate on several data
structures. STAMP is a benchmark suite in progress; we use
version 0.9.7.

5.1 Log-based HTM Characterization

After studying transactional programs with different num-
ber of threads, we have observed that transactional behavior
depends on the characteristics of the program. We classified
transactional benchmarks in two groups in order to analyze
applications with the same properties together.

Table 3 (top half of table) shows the properties of fine-
grain benchmarks, where most of the time is spent in non-
transactional code. The first column, labeled Tx Time,
shows the time spent inside transactions as a percentage of
the total execution time. The other three columns give us an
idea of the average size of transactions. Column Cycles/Tx
shows the average number of cycles per transactions, column
RdLn/Tz shows the average number of cache lines read in a
transaction, and column WrLn/Txz shows the average num-
ber of cache lines written in a transaction. Like fine-grain
locking, only small sections, which access few lines, are ex-
ecuted in mutual exclusion. The behavior of these applica-
tions should be similar to transactional workloads written
by expert programmers.

Table 3 (bottom half) also presents the characteristics of
coarse-grain transactional applications, where all the time is
spent in big atomic and isolated blocks. We believe that such
applications are more typical of future transactional work-
loads. The numbers for Table 3 were collected by running
the applications in single-thread LogTM-SE mode.

Figure 4, which presents the scalability of the log-based
HTM with respect to a single-threaded LogTM-SE execu-
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Figure 4: Log-based HTM speed-up

Benchmark | Tx Time | Cycles/Tx | RdLn/Tx | WrLn/Tx
Barnes 2.55% 713.59 6.29 4.61
Btree 56.84% 329.13 10.58 0.33
Deque 0.79% 62.05 2.50 2.89
Kmeans 8.75% 1481.5 7.62 2.75
Raytrace 0.15% 8.26 6.26 4.63
Bayes 85.25% 90179.17 65.96 46.13
Genome 98.71% 8428.51 37.35 9.77
Labyrinth 99.15% 17400.29 111.90 102.21
Vacation 88.98% 42543.35 179.31 22.88

Table 3: Fine-grain (top) and coarse-grain (bottom)
benchmark properties

tion, shows that applications with small transactions, such
as Barnes, Btree, Deque, Kmeans or Raytrace, have good
performance when are executed with few threads. However,
in 32-threaded executions the abort rate increases, prevent-
ing their scalability. Recent studies [19] have pointed out
the shortcomings of log-based HTM when it has to deal
with applications with huge transactions. Our character-
ization shows that benchmarks with these properties, like
Bayes, Genome, Labyrinth or Vacation, present contention
even when few threads are used.

For that reason, we evaluated these two categories sepa-
rately. Moreover, we have decided to restrict our discussion
to the configurations that make more sense for each cate-
gory, that is for the 32-thread configuration for fine-grain
applications and the 8-thread configuration for the coarse-
grain applications. We chose 8-threads only for coarse-grain
applications because, as we can see from Figure 4, they do
not scale beyond this point.

Fine-grain applications scale better than coarse-grain ap-
plications because they execute non-transactional code most
of the time. Figure 5, presents the normalized distribution of
cycles in 32-threaded fine-grain programs (100% corresponds
to total execution time). Log-based HTM corresponds to the
left-most bar of each group.

On average, 41.2% of the execution time is spent outside
transactions (labeled Non Tz), doing independent parallel
work or waiting in barriers. However, useful transactional
work is only 5.1% of the execution time (labeled Good Tt),
which indicates high contention among transactions.
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Figure 5: 32-thread fine-grain breakdown
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Figure 6: 8-thread coarse-grain breakdown

The biggest transactional overhead is the backoff, which
consumes 40.2% of the execution time. This backoff is used
to spread contention and guarantee the progress of the pro-
gram, increasing exponentially with the abort rate. Al-
though software recovery cycles only represents 2.5% of the
execution time (labeled Aborting), the importance of backoff
suggests high contention in some transactional regions.

Table 4 summarizes the abort rate of log-based and hard-
ware HTMs, presenting the number of aborts per transaction
in both 32-threaded fine-grain and 8-threaded coarse-grain
executions. We can see how log-based HTM transactions re-
quire several executions before committing in the majority
of the benchmarks, which prevents their scalability.

Contrary to fine-grain benchmarks, 12.5% of the time is
wasted in aborted work (transactional cycles discarded when
a transaction aborts) and 24.8% of the time transactions re-
main stalled after detecting a conflict (labeled Aborted Tz
and Stall respectively). On average, 22.6% of the time is
spent in abort recovery. This fact suggests that coarse-
grain applications can increase their performance with ver-
sion management techniques that reduce abort recovery time.

5.2 Acceleration Potential

Figures 7 and 8 show that the potential of using hardware
version management policies is immense. Both eager and
lazy ideal implementations improve log-based implementa-
tion in all the benchmarks because, as can be seen in Fig-
ures 5 and 6, they reduce the abort recovery time. This
also reduces the abort rate (Table 4), because the number
of conflicts that involve aborted transactions decreases.

Reducing the aborts has a positive impact in the perfor-
mance of fine-grain applications. The ideal lazy implementa-
tion improves performance by 26.8% on average over the log-
based implementation, reducing stall, backoff and aborted



ol

Barnes Btree Deque Kmeans Raytrace Average
M Log-based [Jideal Eager [ZIdeal Lazy [ Eagerimpl. & Lazy Impl.

Figure 7: 32-thread fine-grain execution time

cillbilh

Baves Genome Lahyrinth Vacation Average
M Log-based [Jldeal Eager [ ldeal Lazy [ Eager Impl. Lazy Impl.

w S

Speed-up

Figure 8: 8-thread coarse-grain execution time

cycles. Also, the ideal lazy implementation performs bet-
ter than the ideal eager implementation in fine-grain bench-
marks with high-contention because it offers a fast abort
recovery mechanism (Figures 5 and 7).

Our experiments also show that hardware version manage-
ment improves performance greatly over log-based HTMs in
coarse-grain applications (Figure 8). These applications fre-
quently abort large transactions, producing high contention.
The slow abort recovery mechanism of log-based HTMs be-
comes the main bottleneck, delaying the execution of trans-
actions and increasing the conflict rate (Figure 6).

For coarse-grain applications, the ideal eager implemen-
tation achieves a speed-up of 3.1X over the log-based im-
plementation (Figure 8), encouraging hardware techniques
for version management. In Figure 6, we can see that the
ideal eager implementation only spends, on average, 0.8%
of the execution time aborting. Contrary to fine-grain ap-
plications, for coarse-grain applications the ideal lazy imple-
mentation spends about 2.6% of the execution time in the
commit phase. This is the reason why the ideal eager im-
plementation improves performance by 15.9% over the ideal
lazy implementation.

5.3 Accelerated Implementations

The small size of fine-grain transactions allows both the
eager and lazy implementations with the 32-entry limited
buffer to obtain similar performance to the ideal case. In
Table 5 we show a breakdown of all the aborts in both fine-
grain and coarse-grain applications.

For the eager implementation, the SW column shows the
number of aborts recovered by the software handler, and
the Egr column shows the number of aborts recovered by
the store buffer. For the lazy implementation, SW are the
aborts recovered by software, Oufl are the aborts caused by
an overflow of the store buffer, Lazy are the aborts recovered

Benchmark | Log-based | Eager Appr. | Lazy Appr.
Barnes 1.24 1.07 1.12
Btree 0.27 0.25 0.22
Deque 6.77 6.72 6.62
Kmeans 0.77 0.14 0.12
Raytrace 4.32 3.06 2.49
Bayes 4.08 2.03 2.12
Genome 3.48 3.68 3.61
Labyrinth 4.12 0.65 0.72
Vacation 3.06 0.53 0.56

Table 4: Aborts per transaction for 32-thread fine-
grain (top) and 8-thread coarse-grain (bottom).

Eager Impl. Lazy Impl.
Bench. SW Egr | Ovfl Lazy SW Egr
Barnes 341 2035 402 1928 376 99
Btree 34 23261 | 2320 22156 38 | 2126
Deque 0 | 672387 0 | 635125 0 0
Kmeans 0 2692 0 2471 0 0
Raytrace 0 | 157903 0 | 117273 0 0
Bayes 710 1975 374 1393 677 102
Genome 1048 82166 369 84736 | 1191 | 4230
Labyrinth 954 599 | 2048 419 950 0
Vacation 12243 0 | 4091 0 | 9142 0

Table 5: Aborts breakdown for 32-thread fine-grain
(top) and 8-thread coarse-grain (bottom).

by the store buffer (no overflow), and Egr are the aborts
recovered by the store buffer (after overflow).

Notice that the lazy implementation recovers instanta-
neously until the hardware overflows. On overflow, trans-
actions are aborted and re-executed in eager mode. All the
fine-grain applications, except Barnes and Btree, fit in the
hardware buffer. Performance, compared to the log-based
implementation, improves on average by 20.1%.

Although Table 5 shows that most of the coarse-grained
transactions overflow the store buffer, our bounded lazy im-
plementation can take advantage of the store buffer when
re-executing in eager mode and a second abort is generated
before the buffer overflowes again.

This happens in Barnes, Btree or Genome, where most of
the aborts of overflowed transactions are recovered by hard-
ware. Moreover, other applications with variable size trans-
actions, like Labyrinth, can also be accelerated. However,
some coarse-grain applications, such as Bayes or Vacation,
almost always abort by software, which suggests the need
for a bigger buffer. On average, the 32-entry buffer with ea-
ger version management improves coarse-grain application
performance by 54.7% with respect to the log-based HTM,
but its performance is still far from the ideal case.

6. CONCLUSIONS

In this paper, we have shown that aborts are frequent
in many-threaded fine-grain and coarse-grain transactional
applications and that this restricts severely the scalability
of log-based HTMs.

To address this we have proposed the use of specialized
hardware (specifically a gated store buffer) to accelerate ver-
sion management. Furthermore, we have shown how to im-
plement both eager and lazy version management using the
same hardware (i.e., the store buffer). For both, we have dis-
cussed how to utilize a log-based mechanism to handle buffer
overflows. The use of a log-based HTM significantly simpli-



fies previous proposals that require complex structures to ex-
ecute overflowed transactions while outperforming software-
only recovery mechanisms.

Utilizing an infinite store buffer, we have shown that a
lazy policy is better suited to applications with fine-grain
transactions while an eager policy is better suited to appli-
cations with coarse-grain transactions. Utilizing a 32-entry
store buffer, we obtain 20.1% average improvement over log-
based HTM for applications with fine-grain transactions (us-
ing lazy version management) and 54.7% for applications
with coarse-grain transactions (using eager version manage-
ment).
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