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Abstract

The analysis of the relationship among data entities has lead to
model them as graphs. Since the size of the datasets has significantly
grown in the recent years, it has become necessary to implement effi-
cient graph databases that can load and manage these huge datasets.

In this paper, we evaluate the performance of four of the most scal-
able native graph database projects (Neo4j, Jena, HypergraphDB and
DEX). We implement the full HPC Scalable Graph Analysis Bench-
mark, and we test the performance of each database for different
typical graph operations and graph sizes, showing that in their cur-
rent development status, DEX and Neo4j are the most efficient graph
databases.

1 Introduction

Relational database models are providing the storage support for many ap-
plications. Relational database systems store biological datasets, economic

∗The members of DAMA-UPC thank the Ministry of Science and Innovation of Spain
and Generalitat de Catalunya, for grant numbers TIN2009-14560-C03-03 and GRC-1087
respectively.
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transactions, provide storage for dynamic websites, etc. Although the rela-
tional model has proven efficient and scales well for large datasets in table
form, it is not adequate for applications that deeply analyze relationships
among entities. For example, the computation of a shortest path is not sup-
ported by a standard SQL query, and needs a stored procedure with a large
number of joins, which are typically expensive to be computed.

On the other hand, the database community has become aware of this
need for data storage applications for certain environments that do not re-
quire SQL and relational storage. In the recent literature, we find many
projects that set alternative constraints to those imposed by the relational
model in order to provide more natural query interfaces and improve the sys-
tem performance. Some examples of this trend are: documental databases
such as Lucene [2], which is able to fully index large document collections
and support queries that rank the documents according to information re-
trieval measures; key-value data storages, such as BerkeleyDB [5], which
stores the data collections as pairs that map a given key to an object; or
even tabular-like representations without SQL support, such as Bigtable [8],
which stores data as three dimensional tables that are indexed by two strings
plus a timestamp that allows storing temporal sequences.

One type of data representation that is growing in popularity is graph
databases (GDB) because many datasets are naturally modeled as a net-
work of relationships: web data, authorship relationships, biological food
chains, social networks, protein interaction, etc. Besides, the analysis of
these datasets is guided by graph operations such as finding neighborhood
of a node, graph traversals, finding minimum paths or community detection.
Therefore, the storage and query execution in GDBs become the natural
choice to store and develop queries on graphs.

Given that there are several implementations of GDBs, in this paper
we will measure the performance of the most popular GDB alternatives.
We analyze four different GDB libraries: Neo4j, HypergraphDB, Jena and
DEX. We omitted InfoGrid, which is also a popular graph analysis tool,
from this comparison because InfoGrid does not support attributes on edges
(which are required by the HPC-SGAB) and the recommended workaround
is to create additional intermediate nodes as associative entities, which store
the weight [10]. This requires to implement specialized implementations for
InfoGrid, that would differ from the shared algorithm patterns implemented
for the rest of GDBs.

For the evaluation, we apply the recently developed HPC Scalable Graph
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Analysis Benchmark [3] (HPC-SGAB). This benchmark was designed by re-
searchers from academia, as well as members of several industrial companies
to capture the most representative graph operations such as graph loading,
short navigations or full graph traversals. It is out of the scope of this paper
to present novel techniques to solve more efficiently the HPC-SGAB ker-
nels: our main focus is to take advantage of the benchmark to evaluate the
performance of the most representative GDBs available.

To our knowledge, the present work is the first full implementation of
the HPC-SGAB on several GDB engines, running in the same hardware
setup. Furthermore, we discuss several aspects from the HPC-SGAB, that
we think that should be considered for future refinement of the benchmark.
Our results show that some of the current GDBs can handle millions nodes
efficiently, proving that DEX and Neo4j are the most efficient current GDB
implementations.

The paper is organized as follows: Section 2 presents the four GDBs under
study and summarizes its main features, Section 3 describes the HPC-SGAB,
Section 4 reports and discusses the experimental results, Section 5 describes
our experience implementing the benchmark, and finally, Section 6 concludes
the paper.

2 Graph Database Libraries

2.1 Neo4j

Neo4j is a GDB designed for network oriented data, either in tree or gen-
eral graph form. Neo4j does not rely on a relational layout of the data,
but a network model storage that natively stores nodes, relationships and
attributes [14]. Although the wiki provides detailed information about con-
figuring Neo4j [16], to our knowledge, there is no research publication or
technical report with an extensive description of the internals of Neo4j.

Neo4j is one of the most popular alternatives of GDBs due to its dual free
software/commercial license model (AGPL license). Neo4j is fully written in
Java and can be deployed on multiple systems. It supports transactions and
fulfills the ACID consistence properties [14].
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2.2 HypergraphDB

Hypergraph is a GDB, which was designed for artificial intelligence and se-
mantic web projects [9]. As a consequence of the the requirements from these
environments, HypergraphDB stores not only graphs but also hypergraph
structures. A hypergraph is a mathematical generalization of the concept
of a graph, in which the edges are substituted by hyperdges. The difference
between edges and hyperedges is the number of nodes that they connect: a
regular edge connects two nodes of a graph, but a hyperedge connects an
arbitrary set of nodes. Given that the tests in the benchmark only compute
operations on regular graphs, we will not take advantage of this feature from
HypergraphDB.

HypergraphDB stores all the graph information in the form of key-value
pairs. Each object of the graph, either nodes or edges, is identified with a
single key that is called atom. Each atom is related to a set of atoms, which
can contain zero or any number of elements. These relationships create the
topological structure of the graph. HypergraphDB also supports node and
edge typing. The types are also implemented as atoms that contain all the
elements of a particular type [9].

The key-value structures are stored on an external library, BerkeleyDB [5],
which does not support relational queries but provides specialized structures
for this type of storage. BerkeleyDB offers three access methods to data:
hashes, B-trees and Recno [17]. The first is implemented as a linear hash,
which in case of multiple collisions performs multiple hashes to redistribute
the colliding keys. The B-trees store the data in the leaves of a balanced
tree. Recno assigns a logical record identifier to each pair, which is indexed
for direct access.

2.3 Jena (RDF)

The Resource Description Framework (RDF) is a standard for describing
relationships among entities. A relationship expressed in RDF is expressed as
a triplet: a subject, a predicate and an object. The interpretation is that the
subject applies a predicate on the object. Therefore, a RDF description can
be viewed as a graph where the subject and the object are the vertices, and
the predicate corresponds to the edge that relates them. There are several
RDF based graph implementations: Jena [11], Sesame [18], AllegroGraph [1],
etc. In our tests, we selected Jena because it is one of the most widely used.
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Jena can be run on two storage backends, which store the RDF triplets:
SDB and TDB [11]. In this paper, we limit our tests to the TDB backend
because it provides better performance according to the Jena documentation.
TDB stores the graph as a set of tables and indexes: (a) the node table and
(b) the triple indexes1.

The node table stores a map of the nodes in the graph to the node iden-
tifiers (which are a MD5 hash), and viceversa. The storage is a sequential
access file for the identifier-to-node mapping, and a B-tree for the node-to-
identifier mapping.

The triple indexes store the RDF tuples, that describe the structure of
the graph. Jena does not implement a table with the three attributes of the
RDF tuple, but three separate indexes. Each of these three indexes takes
as the sorting key, each one of the three attributes of an RDF structure.
Nevertheless, the value stored in the index is the full tuple for all the three
indexes, in other words an access to any of the three indexes is able to retrieve
a RDF relationship.

2.4 DEX

DEX is an efficient GDB implementation based on bitmap representations
of the entities. All the nodes and edges are encoded as collections of objects,
each of which has a unique oid that is a logical identifier [13].

DEX implements two main types of structures: bitmaps and maps. DEX
converts a logical adjacency matrix into multiple small indexes to improve the
management of out-of-core workloads, with the use of efficient I/O and cache
policies. DEX encodes the adjacency list of each node in a bitmap, which
for the adjacent nodes has the corresponding bit set. Given that bitmaps of
graphs are typically sparse, the bitmaps are compressed, and hence are more
compact than traditional adjacency matrices.

Additionally, DEX is able to support attributes for either vertices and
edges, which are stored in a B-tree index. DEX implements two types of
maps, which are traversed depending on the query: ones that map from the
oid to the attribute value, and others from the attribute value to the list of
oids that have this value. This schema fully indexes the whole contents of
the GDB.

1An additional small table, called prefix table, is also used to export the results to
other formats such as XML. This table is not used in a regular query execution [11].
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In a nutshell, this implementation model based on multiple indexes fa-
vors the caching of significant parts of the data with a small memory usage,
reverting in a better efficient storage and query performance [13].

3 Benchmark description

In this paper, we will implement the queries of the HPC Scalable Graph
Analysis Benchmark v1.0 for the previously described GDBs. This bench-
mark was designed from a collaboration between researchers from universities
and engineers from industrial partners that analyze different aspects of the
performance of a GDB. In the rest of this section, we summarize this bench-
mark.

3.1 Data generation

In this benchmark, we test the performance of operations on directed and
weighted graphs. The dataset is generated using the R-MAT algorithm,
which is able to build graphs of any particular size and edge density [7]. Fur-
thermore, the graphs that R-MAT builds follow typical real graph distribu-
tions (power law distributions), such as those found in real life situations [7].

The general idea of R-MAT is the following. Suppose that we represent
the graph as an adjacency matrix, in which each row and column is a vertex
and the coordinates into the matrix indicate if the two vertices are connected.
R-MAT divides the matrix in four equal squared sections, which have an
associated probability in HPC-SGAB: a, b, c and d. Then, R-MAT picks
one of the four sections according to these probabilities. Once the section is
selected, R-MAT iterates recursively this process dividing again the selected
section in four equal parts. The process finishes when the size of the selection
is equal to one position, and then, R-MAT selects this position as the next
inserted edge. The process can be iterated arbitrarily to create graphs of the
desired density.

In general, the parameters must not be symmetric in order to have power
law distributions in the graph (which are the most common distribution in
real huge graph datasets [12]). In our benchmark, we take the recommended
values by the HPC-SGAB for all the graphs tested: a = 0.55, b = 0.1,
c = 0.1 and d = 0.25. The number of nodes and edges of the graph is
indicated by a parameter called scale. The number of nodes is N = 2scale,
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and the corresponding number of edges is M = 8 · N . Finally, the weight
of each edge is a positive integer value following a uniform distribution with
maximum value 2scale. In the experimental section, we fix the probabilities
to the stated parameters and study the performance of the different GDBs
for different scales.

The R-MAT generation time is not computed for the benchmark, since it
is not part of the GDB performance. Therefore, R-MAT generates a file of
tuples with the form <StartVertex, EndVertex, Weight>, that will be loaded
into the native GDB format.

3.2 Kernel description

This benchmark is composed of four kernels, where a kernel is an operation
whose performance is tested. The first kernel loads the data in the GDB, and
the rest of kernels will use this image to compute the queries. The kernels
are the following:

• Kernel 1: The first kernel measures the edge and node insertion per-
formance of a GDB. This kernel reads the database file, in the format
described in Section 3.1, and loads it. The loading includes the creation
of all the indexes needed to speedup the computation of the following
kernels. Note that the R-MAT file generation process is not included
in this timing. In the following queries to the GDB, we use the graph
loaded by this kernel, which cannot be modified during the following
kernels.

• Kernel 2: This kernel measures the time needed to find a set of edges
that meet a condition, in this case it finds all the edges with the largest
weight. The algorithm output is the list of edges and nodes that connect
them. The list of nodes is stored in order to initialize Kernel 3.

• Kernel 3: This kernel measures the time spent to build subgraphs in
the neighborhood of a node. It computes a k-hops operation, which we
implemented using a breadth first search traversal, starting from the
edges produced by Kernel 2. We set 2 as the number of additional hops
that the algorithm traverses from the tail node of each edge, which adds
up to total length of three including the initial edge. Since the graphs
follow power law distributions, this operation may access a significant
number of nodes.
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• Kernel 4: This kernel estimates the traversal performance of the GDB
over the whole graph. This value is estimated as the Traversed Edges
Per Second (TEPS). Kernel 4 estimates the TEPS using a complex
graph operation that calculates the Betweness Centrality (BC) of the
graph. The BC of a graph gives a score to each node that indicates how
far is a node from the center of the graph. It assigns low scores to the
nodes that are in the external parts of the graph, and high scores to
the nodes that are in the internal parts of the graphs. More formally,
the BC of one vertex v accounts for the ratio of shortest paths (σst )
between any pair s and t of nodes that pass through v (σst(v) ) with
respect to those that do not:

BC(v) =
∑

s 6=v 6=t∈G

σst(v)

σst

.

Note that when we refer to the BC of a node we are not considering
the weight of the edges. However, this kernel does not compute the BC
on the whole graph but on the induced graph that removes all edges
with a weight multiple of eight and keeps all the nodes, as indicated by
the benchmark. We implement this restriction implementing a BC al-
gorithm that skips the edges that are multiples of eight while exploring
the graph, instead of computing this subgraph during Kernel 1.

We implement the BC using the Bader’s algorithm [4] for a single core,
which provides an approximated solution based on the Brande’s exact
algorithm [6]. The complexity of Bader’s strategy is O(k ·M), where
k is the number of samples, and is the recommended algorithm by the
HPC-SGAB. The Bader’s algorithm calculates the centrality using a
sample of multiple BFS traversals, starting from different nodes. In
our tests, we pick 8 (in other words, scale 3) as the number of samples
for computing the BC.

4 Experiments

4.1 Experimental setup

For each of the databases, we used the latest available versions: Neo4j v.1.0,
Hypergraph v.1.0, Jena v.2.6.2 (with TDB 0.8.4), and Dex v.3.0. All the
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benchmarks were implemented using the Java interface of the GDBs, which
is the recommended programming API for all of them. In order to minimize
differences in the performance because of the algorithm implementation, we
followed the recommended algorithms described in the HPC-SAGB descrip-
tion, and all the implementations were written following the same generic
implementation.2

In order to configure each database, we used the default configuration plus
the recommendations found in the documentation of the websites. For Neo4j,
we implement Kernel 1 with the batch inserter (which disables transactions),
configured with the recommended values: N · 9 bytes for the edge store,
N · 33 bytes for the node store [15]. For HyperGraphDB, we disabled the
transactional capabilities, which were not required in the benchmark and are
an additional overhead.

The kernels are executed in the order indicated by the HPC-SGAB. In
Section 4.2, we report the results after a warm up stage, that computes ker-
nels 2 and 3 once. This setup resembles a database system that is computing
queries during long timespans. Nevertheless, we also discuss the results with-
out a warm up stage in Section 5. We halt the execution of kernels that take
more than 24 hours to compute.

We execute our experiments in a computer equipped with two Quad Core
Intel Xeon E5410 at 2,33 GHz, 11 GB of RAM and a LFF 2.25Tb disk. We
use the default parameterization of the Java Virtual Machine for all the
kernels except for the largest ones: 2GB for scale 20, and 10GB for scale 22
and up.

4.2 Analysis of results

We executed the HPC-SGAB with four different scales for the already de-
scribed databases: 10, 15 and 20. These setups correspond to databases with
1k, 32k and 1M nodes, which account for a total number of objects ranging
from approximately 10k to more than 9.4M objects.

Tables 1, 2 and 3 summarize the results of the benchmark for the different
kernels tested. We were not able to scale the comparison over larger scale
factors because most GDBs had problems to load the full graph in a reason-
able time with our current hardware, and hence we could not continue the

2The query implementations are publicly available in the following website: http:

//trabal.ac.upc.edu/public/dama-upc-iwgd2010-hpca-sgab-source.zip
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Kernel DEX Neo4j Jena HypergraphDB

K1 Load (s) 0.316 19.30 7.895 376.9

K2 Scan edges (s) 0.001 0.131 0.090 0.052

K3 2-hops (s) 0.003 0.006 0.245 0.015

K4 BC (s) 0.512 0.393 5.064 1.242

Db size (MB) 2.1 0.6 6.6 26.0

Table 1: Scale factor 10
Kernel DEX Neo4j Jena HypergraphDB

K1 Load (s) 7.44 697 141 +24h

K2 Scan edges (s) 0.001 2.71 0.689 N/A

K3 2-hops (s) 0.012 0.026 0.443 N/A

K4 BC (s) 14.8 8.24 138 N/A

Db size (MB) 30 17 207 N/A

Table 2: Scale factor 15
Kernel DEX Neo4j Jena HypergraphDB

K1 Load (s) 317 32094 4560 +24h

K2 Scan edges (s) 0.005 751 18.60 N/A

K3 2-hops (s) 0.033 0.023 0.458 N/A

K4 BC (s) 617 7027 59512 N/A

Db size (MB) 893 539 6656 N/A

Table 3: Scale factor 20.
comparison for even larger datasets. We could not load the scale 22 graph
in less than 24 hours in the GDBs tested, except for DEX where it took 27.5
minutes. Furthermore, we were not able to load the scale 24 graph in less
than three days in any of the databases, except for DEX, for which it took
28 hours.

We first observe that the scalability of all the databases is not equivalent.
Although DEX and Neo4j were able to scale up to the 1M nodes dataset,
Jena and HypergraphDB could not load the database in a comparable time.
We were not able to load the graphs with 1M nodes in HypergraphDB in 24
hours, and although Jena was able to load the graph with 1M nodes faster
than Neo4j, Jena did not scale to the largest scale.

Regarding Kernel 1, which measures the load time, we find that the fastest
alternative is DEX that loads the dataset at least one order of magnitude
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Figure 2: TEPS (Kernel 4)

faster than the rest of algorithms. The insertion rate for DEX scales well for
the different benchmarks, adding roughly 30k objects per second as depicted
in Figure 1. Jena inserts approximately 2k objects per second, and Neo4j is
up to two orders of magnitude slower than DEX for adding data. On the
other hand, the image generated by Neo4j is the most compact: it is 40%
smaller than the following one, which is DEX, and 90% and 98% with respect
to Jena and HypergraphDB.

Kernel 2, measures the time to find a subset of edges. For this task,
DEX is the fastest algorithm again for all the tested sizes because it can take
advantage of its indexes over edges [13]. It is a fast operation for all the
GDBs, because it consists of a single iteration over the weights of all edges.
However, for large graphs this operation is expensive for Neo4j because the
API does not provide a direct access for iterating over all edges. In order
to retrieve the edges, Neo4j iterates over all the nodes in the database, and
explores the adjacent edges, which supposes an additional overhead to Kernel
2. This is particularly expensive when the graph is large because since it
follows a power law distribution, some nodes have an elevated degree.

All the GDBs are able to compute the third kernel very fast. The opera-
tion accesses the local neighborhood of one node and we observe that Neo4j
is the best for larger graphs for Kernel 3. On the other hand, DEX is the
fastest for the small graph and is very close to Neo4j for the large graph. As
we discuss in Section 5, this kernel is heavily influenced by the warm up of
the database because of the very short execution time.
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Finally, Kernel 4 measures the traversal performance of each algorithm
over the whole graph. For the smallest graph size, Neo4j obtains the best
performance, but for larger graphs DEX scales better. For small graphs,
DEX and Neo4j are significantly faster than the other two GDBs: Neo4j
is up to five times faster than HypergraphDB and one order of magnitude
faster than Jena. For large graphs, there are big differences among the three
databases. DEX obtains a speedup above 60 over Jena and a speedup above
11 over Neo4j.

Figure 2 depicts the discussed results for Kernel 4 as a function of the
traversed edges per second, which is more adequate for comparing different
database sizes. We observe that DEX and Jena scale with the size of the
graph because the slope of the curve is not very pronounced. Nevertheless,
DEX is able to traverse 10 times more edges than Jena, which makes DEX a
better choice for traversing operations. On the other hand, Neo4J traverses
more than 32k TEPS for the small graph but when the graph is large the
performance decreases to less than 1.2k TEPS.

In summary, we found that DEX and Neo4j are the only databases that
were able to load the largest graphs and compute the queries efficiently.
HypergraphDB failed to load the scale 15 and 20 databases in a reasonable
time, and in any case, it was not faster than DEX and Neo4j for any kernel.
Jena scaled up to factor 20 but it was slower than Neo4j and DEX. We
observed that DEX is the fastest for most kernels (9 out of 12 kernels),
and in the three cases where Neo4j is the fastest, the difference is small.
Furthermore, we detected that Neo4j did not scale as well as DEX for Kernels
1, 2 and 4, in which DEX is up to more than ten times faster than Neo4j.

5 Experience from the benchmark

In this section, we discuss some considerations that we have drawn after
implementing the benchmark. We group them into the following points:

• Imbalance in Kernels 2 and 3 costs. We found that the compu-
tation cost of the different kernel operations is very different, specially
for the largest graphs, where the computation of Kernel 4 consumes
10k more time than Kernels 2 and 3 for scale 20. Kernels 2 and 3
measure the performance of operations that are local in nature and
whose cost does not grow at the same rate of the graph. For example,
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the number of objects grows 1000 times from scale 10 to 20, and thus
Kernel 1 building costs are multiplied by this magnitude. But, the cost
of computing Kernel 3 is only about ten times larger with the change
of scale.

• TEPS estimation: On the other side of the spectrum, the BC func-
tion calculated in Kernel 4 is a very complex operation. The use of the
exact BC is not affordable for large graphs because the number of BFS
traversals is equal to the number of nodes. Therefore, the application
of the Brandes approximated algorithm for Kernel 4 is necessary for
large graphs.

Furthermore, we found that the number of samples to estimate the
TEPS for a particular GDB does not need many traversals. In Figure 3,
we depict the average TEPS of the databases for an increasing number
of samples of Kernel 4. In this plot, the TEPS is normalized to the
TEPS of the fastest sample of the BC algorithm for each database.
We observed that the first sample exhibits a warm up effect, such as
for DEX and Neo4j, because they load for first time some of the data
structures of the graphs. However, once the number of samples is above
two the TEPS stabilizes for all the databases. Thus, as Figure 3 shows,
Kernel 4 does not need an excessive number of iterations to estimate
the TEPS obtained by a GDB, i.e. more than eight iterations would
not be necessary to measure the traversal performance of the GDB.
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• Warm up: An important topic that is not discussed in the benchmark
description is the warm up process of the GDB. Typically, the imple-
mentation of good caching strategies improves the performance of an
application because it does not read information from the secondary
storage. In Figure 4, we plot the overhead produced by the first execu-
tion of one kernel compared to the following computation of the same
kernel. The difference between having all data in memory or loading
part from disk is more severe for kernels that measure simple opera-
tions that are computed very fast, such as the kernel 2 and 3 of the
HPC-SGAB. For example, in DEX the first computation of Kernel 2
takes approximately 100 times more to be computed than the following
executions. The reason is that the first execution loads from disk the
necessary data pages, which takes half a second, and then computes
the query in five milliseconds more. The following executions skip the
cost to load from disk, and thus are significantly faster. This effect is
clearly visible in DEX and Jena in Figure 4.

As a consequence of the previous issues we believe that some aspects can
still be improved for future revisions of the benchmark. From our point of
view, the time needed to compute all kernels should be harmonized and scale
at a similar rate to the graph growth. For example, we suggest that Kernel 3
should perform the k-hops operation over a larger set of nodes as origin.
Instead of only picking the set of edges with the largest weight, we suggest
to pick a fixed percentage of edges, such as the set of the 1h largest edges.

Furthermore, we think that it is important to include a remark about
the warm up of the GDB in the benchmark description. Since GDBs are
complex and have their own bufferpool implementation, we think that the
fairest option would be to enable a warm up process before the timed ker-
nel executions. This is particularly important for graphs that do not fit in
memory and where the bufferpool hit rate plays a significant role in the final
system performance.

6 Conclusions

In this paper, we have tested the performance of four of the most popu-
lar graph data management applications with the recently developed HPC-
SGAB. The results derived from the benchmark show that for small graphs
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all four databases are capable to achieve a reasonable performance for most
operations. However, in our hardware setup, only DEX and Neo4j were able
to load the largest benchmark sizes.

DEX is the fastest database loading the graph data and performing the
operations that scan all the edges of the graph, exhibiting an improvement
over one order of magnitude than the second best graph database, Neo4j.
For Kernel 3, we found that Neo4j is faster than DEX for the large dataset,
and the reverse happens for the small dataset. Nevertheless, the difference
between both databases is small for all the data sizes tested in Kernel 3.
For Kernel 4, Neo4j is able traverse more than 32k TEPS, but they do not
scale properly for graphs with a million nodes because the performance drops
to 1,2k TEPS. On the other hand, DEX is able to scale better, traversing
roughly 15k TEPS either for small and large graphs. All in all, Neo4j obtained
a good throughput for some operations, but we found that it had scalability
problems for some operations on large data volumes, specially in the full
graph traversals. DEX achieved the best performance for most operations
and close to Neo4j, in those where Neo4j was the fastest.

Finally, we discussed two aspects to take into account for improving future
versions of HPC-SGAB kernels based on our experience implementing and
testing it on real hardware: (a) harmonize the costs of Kernels 2, 3 and 4
with operations that scale similarly with the graph size in order to obtain
a more balanced benchmark, (b) defining a warm up policy that is able to
show the performance of the databases with respect to the secondary storage
devices for huge graphs.
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