
Execution Environments for Distributed

Computation Issues

Sergi Baila Vicenç Beltran Julita Corbalan

Toni Cortes Marta Garćıa Íñigo Goiri
Jordi Guitart Ferran Julià Jonathan Mart́ı

Jesús Malo Ramon Nou

December 18, 2007

2

Abstract

This report is the result of a survey done by master students on differ-
ent areas. Taking into account the interest of this issues, it has been
decided to publish it as a Research Report.

Chapter 1 is focused on replica management in Grid environments.
The chapter is divided in sections corresponding to key aspects of
the state of the field of the topic. Firstly, strategies to select and
locate file replicas among the Grid nodes are commented. Secondly,
some techniques to create and delete replicas are described. Then, it
is defined the problem of handling consistency policies among these
replicas and some solutions for data grids. Finally, it is introduced
a section to discuss about other concepts such as the selection of the
optimal placement for file replicas, or how the replication mechanisms
influence the job scheduler.

Chapter 2 focuses in a special execution environment: virtualiza-
tion. This method allows abstracting overlaying resources creating a
very useful and innovative way to work in computing. Different vir-
tualization techniques and some products that implement these are
classified and described. It also talks about some implementation de-
tails including new technologies such as Intel VT-x. In the last part,
virtualization real applications are described and its advantages re-
spect traditional environments.

Chapter 3 the increasing complexity, heterogeneity and scale of
systems has forced to emerge new techniques to help system man-
agers. This has been achieved through autonomic computing, a set
of self-* techniques (self-healing, self-managing, self-configuring, etc.)
that enable systems and applications to manage themselves following a
high-level guidance. This chapter is centered in the self-management

3

4

capability of autonomic systems, it pretends to give an overview of
the three most popular mechanisms used to achieve self-management,
action policies, goal policies and utility function policies. This chap-
ter presents a summary of autonomic systems’ architecture and an
extended view of the different policy mechanisms analysing the use-
fulness of each one.

Chapter 4 introduces a new technique for streaming server side
events on a web application. Being an extension of the recent AJAX
model for web applications Comet is another step towards the con-
fluence between desktop and web applications. The scalability issues
that this model present are examined, along with the Bayeux proto-
col and a glimpse on the current libraries implementing Comet and
the servers which have solved the scalability using by means of asyn-
chronous request processing based on non blocking I/O.

Chapter 5 currently distributed applications rely on several layers
of abstraction. These layers of abstraction play a critical role in the
whole distributed application, thus they are in part responsible for
an important part of the whole performance of applications. We will
focus specifically on those technologies commonly used in distributed
environments like CORBA, RMI, Web Services and their impact in
Grid architectures.

Contents

1 Replica Management in the Grid 7
1.1 Introduction . 8
1.2 Selection and location of replicas 10
1.3 Replica creation . 16
1.4 Replica removal . 26
1.5 Consistency and coordination 28
1.6 Other issues . 33
1.7 Discussion / Conclusions 39
1.8 Future Trends . 40

2 Virtualization 51
2.1 Introduction . 52
2.2 Virtualization types . 53
2.3 Implementation issues 66
2.4 Virtualization in the real world 69
2.5 Conclusions . 75

3 Self-managed policies, a survey 81
3.1 Motivation . 82
3.2 Introduction . 82
3.3 Architecture . 83
3.4 Achieving Self-management 90
3.5 Conclusion . 98
3.6 Future Trends . 99

5

6 CONTENTS

4 Web Push 105
4.1 Introduction . 106
4.2 Background . 108
4.3 Introduction to Comet 111
4.4 Scalability issues . 118
4.5 Comet frameworks . 119
4.6 Conclusions . 123
4.7 Future Trends . 123
4.8 References / Further Reading 124

5 Job Self-Management in Grid 129
5.1 Introduction . 130
5.2 User Level API’s and its Standardization efforts 132
5.3 Job Management Architectures 136
5.4 Service Level Agreements (SLA) 144
5.5 Conclusions and Future Trends 152

Chapter 1

Replica Management in
the Grid

Toni Cortes, Jesús Malo and Jonathan Mart́ı

Abstract

In order to achieve the computational and data requirements for cur-
rent scientific applications, grids have appeared. Data grids provide
geographically distributed resources for large-scale data-intensive ap-
plications that generate large data sets while computational grids are
focused on cpu-intensive applications.

Grid environments are very dynamic and unpredictable, full of
possible outage, disconnections, network splits, high latencies, band-
width variations and data corruption. Low latency, fast access, fault-
tolerance and high availability are goals that data grids must achieve
when accessing to such huge and widely distributed data is required.
For these reasons, data grids are very complex systems with an enor-
mous set of possibilities and strategies.

This chapter will show the state of the art in replica management.
Issues like identification of replicas, propagation of updates, consis-
tency and coherence among replicas have to be taken into account by
the replica management system. They must be solved to reach the

7

8 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

best advantages of data replication. Existing approaches dealing with
those challenging issues will also be remarked on.

The different schemes for replication and algorithms for replica
placement are keys to gain the best performance. In this case, issues
like unbalanced distribution of replicas can reduce the good perfor-
mance of data grids. For these reasons, replica creation, selection and
migration are also important. They allow to define suitable schemes
of replicas depending of access and age of data, available resources,
costs and computational power. Existing approaches are both static
and dynamic ones getting a fixed or an autonomic behaviour to data
grids. Regarding to dynamic replication, economic models, prediction
of use, game theory and bio-inspired algorithms are the most promis-
ing approaches.

1.1 Introduction

Over the last few years Computational Science has been evolving
to include information management. Scientists are faced with huge
amounts of data that stem from four trends: the flood of data from
new scientific instruments driven by Moore’s Law - doubling their data
output every year or so; the flood of data from simulations; the abil-
ity to economically store petabytes of data online; and the Internet
and computational Grids that makes all these archives accessible to
anyone anywhere, allowing the replication, creation, and recreation of
more data. Therefore, the term Data Grid has been appeared in the
literature to refer to this trend change.

Data Grids provide geographically distributed resources for large-
scale data-intensive applications that generate large data sets. How-
ever, ensuring efficient and fast access to such huge and widely dis-
tributed data is hindered by the high latencies of the Internet. Many
studies have been done to address these problems, e.g. parallel access
to data, file replication, multicast at application level, etc.

This chapter is focused on replication management mecha-
nisms in Data Grids.

Mainly, these replication management strategies look forward to
achieve the following goals (or a set of them):

• Offer high data availability: data is accessible to anyone from

1.1. INTRODUCTION 9

anywhere.

• Exploit data locality: data is near to where it is needed, so
bandwidth consumption is decreased because it is not necessary
to get data whenever is needed, and therefore data access latency
is improved too.

• Load balance: handling replicas of a file in different nodes helps
on improve the overall load balance and also overcomes potential
bottlenecks.

• Increase fault tolerance: since data is replicated in several dif-
ferent nodes around the world, it is more likely to be able to
recover it.

Therefore, some issues must be taken into account to build repli-
cation management mechanisms and to deal with their consequences.
Specifically, this chapter will be focused on:

• Replica selection and location among Grid nodes.

• Replica creation strategies (how and where).

• Replica removal strategies (which ones and when).

• Consistency and coordination among replicas.

• Other issues

– Data replication complexity in Data Grids

– Replica placement algorithms

– Scheduling and data replication

Firstly, some strategies are introduced regarding replica selection
and location among Grid nodes. The key idea is to introduce the main
mechanisms enabling the replication management system to select and
localize the best replica given a certain file request.

Secondly, regarding replica creation, the most representative strate-
gies for replication are introduced. Mainly, we are going to focus on
approaches based on:

10 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

• Predictive algorithms that use data mining over file access his-
tories, so demand of files can be predicted and replication could
be started before a file is really requested.

• Economy-based models based on auction protocols, which are
used to manage the migration and creation of replicas in order
to optimize the overall performance of the system.

Thirdly, we are going to expound replica removal strategies, which
are necessary in order to maintain the overall scalability of the system.

Finally, we are going to talk about the consistency and coordi-
nation mechanisms. These mechanisms are applied in order to ensure
that replicas of the same file are up-to-date and coordinated according
different kind of consistency and coherency policies.

1.2 Selection and location of replicas

1.2.1 Replica selection

Replica selection is a challenging issue of current data grids in order
to achieve best performance. Choosing the best replica usually means
selecting replicas placed in hosts with the fastest links or with lowest
latency, but it can also have to deal with user’s requirements or others
metrics.

Selecting the best replica is a key issue for grids and the chosen
strategy modifies the behaviour of schedulers, replicators, the way in
what jobs are submitted and the achievable performance. Schedulers
have to take account of replica locations when they decide where to
place new jobs. Replicators change their decisions about new replica
placement for getting a better improvement. Jobs are submitted with
different stage in or stage out parameters or, indeed, with parameters
using several locations. Of course, using fastest replicas improve the
overall system because waits of jobs for data will be reduced. As you
can see, selecting good data sources is a key stone in high-performance
grids.

Current approaches take care of users’ requirements and QoS for
job submissions and access to data. They are able to do it taking
account of different metrics, such as round trip time, bottleneck band-
width, server request latency, available bandwidth, network proximity,

1.2. SELECTION AND LOCATION OF REPLICAS 11

server load or response time. These metrics allow schedulers and other
smart services select the best replica.

In [49], authors introduce a mechanism for replica selection based
on given information from users’ preferences and replica location. It is
implemented as a high level service where the main component is the
Storage Broker. Storage Broker is a component integrated in every
client and is able to process users’ requirements by means of Condor’s
ClassAds [33] specifications and matchmaking mechanisms [40]. Stor-
age brokers firstly query to the replica catalog for retrieving the whole
set of locations. For each location, they ask servers for their charac-
teristics. Finally the process retrieves data and matches them with
the given requirements.

Other more flexible approach is the based on contracts [20]. In
this approach, users specify requirements with QoS binding contracts
specified in XML. The system performs an heuristic search taking
these contracts into account. Used metrics can be RTT, bottleneck
and available bandwidth, system computational load, replica load or
host availability. Replicas are organized in replication domains de-
pending of network proximity, which can be calculated by means of
the topological distance or the geographical one. Besides replication
domains, there are logical domains containing the set of clients ac-
cessing to a replication domain, a replication domain, a RLS and a
Metrology Server, which analyzes and aggregates a history of metrics
collected in a given time-period. Selection is performed in two steps.
In the first one, search is done over the logical domain of the client
and every non-overloaded replica is selected. Second step consists in
filtering QoS user’s restrictions. If no replica is selected, then a replica
with a tolerable QoS is selected.

As you can see, selection mechanisms are defined in the core of
the replica system. This can be moved to an encapsulated module,
such as the Optor component of [29]. Also, a more flexible approach
can be taken, allowing users specify their own selection algorithms, as
Pegasus does [18]. Pegasus is able to deal with different replica selec-
tion algorithms, like random, round-robin or min-min ones. Replica
selection is automatized but can be configured to delay it until job
submission or taking account of different users’ criteria. Decisions are
finally adopted following the existing information in metadata servers
and replica location services.

12 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

Regarding how measures of dynamism of grids are done, in order
to get adaptive schemes for replica selection, NWS [50] is commonly
used. NWS is a measuring system with prediction capacities over net-
work bandwidths. In [2], replica selection is done based on received
information from NWS, i.e., network bandwidth, latencies and predic-
tion. The request manager selects the replica with highest bandwidth
among source and target hosts.

Finally, it is remarkable the work presented in [19]. In this case,
the proposed approach is avoiding replica selection in favour of taking
advantage of parallel transfering from all replicas hosts. This scheme
is shown to be efficient because it avoids discrimination among replicas
with little differences. Transfers are done from locations given by a
RLS and predictions of NWS. In order to get the best profits of parallel
transfers, several algorithms are used to adapt size of requested data
to dynamism of available transfer rates.

1.2.2 Replica location

Replication of data is a very effective strategy for achieving a good
performance in access to remote data. This approach generates several
copies of the same data distributed among different hosts. Obviously,
benefits of replication can only be achieved if replicas are available,
i.e. they can be accessed.

Every new replica requires a name to be accessed. This name can
be an URI, a filename, a system unique number, etc. In short, an
identifier able to identify the replica inside the whole set of existing
replicas in the system. This identifier is the key to locate the replica,
so without it replicas are useless because they can’t be handled.

Identifiers must fulfill a set of characteristics in order to be effective:
they must assure the uniqueness of themselves, avoiding ambiguity in
the resolution of replicas location, and they must be resolvable in an
efficient way, otherwise they could become a system bottleneck.

Uniqueness and resolution are the reasons because a replica loca-
tion service or a replica catalog are needed in grids. These services are
specialized databases storing locations and names of replicas. They
usually allow to query for replicas fitting some characteristics, based
on attributes of data.

1.2. SELECTION AND LOCATION OF REPLICAS 13

Without this kind of services, replicas should be accessed or ex-
plicitly specified by users or grid applications or, what it’s worst, they
should assign directly globally unique names to replicated files. Al-
though this task is easy to do in small systems, like a non-distributed
file system, when we are talking of hundreds or thousands of hosts
with millions of files distributed all over the world, it’s a challeng-
ing task. Besides the magnitude of the problem, users usually want
an easy-to-remember name for their data, so the necessity of services
solving aliases to locations is obvious.

One of the most successful approaches dealing with the resolution
and location of replicas is the introduced one at [13]. It presents a
replica location service (RLS) that maintains and provides access to
information about the physical location of copies. This service maps
logical file names (LFN) to physical file names (PFN). A logical file
name is an unique logical identifier representing the data, while a
physical file name is the real name of a replica in a system, such as an
URI. The service is formed by two components: the local replica cata-
log (LRC) and the replica location index (RLI), as shown in figure 1.1.
A local replica catalog has the information of replicas at a single site
while the replica location index stores and aggregates the information
it receives from a set of LRCs. RLI is also responsible for answering
clients’ requests about LFNs and PFNs, typically of the kind ”given a
LFN get a set of PFNs” or ”given a PFN get the LFN related to”.

An implementation of the described RLS is presented and analyzed
in [14]. Besides the mentioned general structure, this implementation
provides soft state updating mechanisms to maintain RLI state and
optional compression of soft state updates. Soft state is required to
allow RLIs recover from failures without handling consistency issues of
persistent states. Local replica catalogs send periodic messages of their
state to RLIs, i.e. a list of all logical names for which mappings are
stored in an LRC. Soft state information expires after a period of time
and it should be refreshed. Because there is a constant consignment of
updates to RLIs, it’s important to reduce the size of updates packages.
For this reason, a compression algorithm was introduced based on
Bloom filters [8].

Although the previously described architecture has been imple-
mented in Globus [21] and used succesfully by several scientific projects,
such as Earth System Grid [24] and the Laser Interferometer Gravita-

14 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

Figure 1.1: Globus Replica Location Service scheme

tional Wave Observatory [36], it has some issues, being the main one
that the scheme is too static. Changes on the distribution of servers
have to be made with administrator tools and, in case of failures, the
system is not smart enough for self-managing. For these reasons, a
modification was proposed in [10] (Figure 1.2). In this project, LRCs
were kept intact but RLIs were modified, being called now P-RLIs.
P-RLIs are able to contact themselves using Chord [46] for message-
passing. They conform an overlay network with fault-tolerant charac-
teristics and self-managing capable. The scalability of the system is
also increased. With this approach, LRCs only have to communicate
with a P-RLI instead of a set of static RLIs in order to achieve a good
fault-tolerant system.

Figure 1.2: Peer-to-Peer Replica Location Service based on Chord

1.2. SELECTION AND LOCATION OF REPLICAS 15

In [41], a different distributed RLS is shown. In this case, the
authors do not use Chord but their own mechanism for distribution
of indexes. This system is organized as a flat overlay network which
also uses Bloom filter based compression protocols for messaging. The
adaptive nature of the system comes from the use of soft-states mech-
anisms. As P-RLIs do, the used overlay network include the indexer
services of the whole system and they distribute digests of their soft
states among themselves.

A totally different approach for replica location is OceanStore’s
one [28]. This system assigns a globally unique identifier (GUID) to
every object that it stores. A GUID is a secure hash based on owner’s
key and a name assigned by the owner of the object. GUIDs identifies
same content, so any replica of an object has assigned the same GUID,
doing useless LFN-to-PFN maps used by previously explained RLSs.
Location of hosts storing replicas is done with a probabilistic algorithm
and a deterministic one too. First of all, when a query for an object
is received, it’s routed to the closest node which probably could have
a replica of the requested object. This is done using the local Bloom
filter of the node. If any replica is not found in the target node, then
a slower deterministic algorithm is used to locate the replica. Besides
GUIDs for replicas, each node in the system has assigned a random
unique node-ID identifying it inside the system.

A more complex scheme is shown in [44]. Besides LFNs and PFNs,
site URLs, transfer URLs and source URLs are introduced. Essen-
tially, a LFN is equivalent to a source URL. Transfer URLs are URLs
containing enough information for getting the real data of the replica
and can be sent to any storage resource manager (SRM). Site URLs
are URLs sent to a SRM which can be managing a set of multiple
physical resources. When a client sent a site URL to a SRM, it will
answer with a transfer URL, allowing the client to access data.

As you can see, there are several approaches for dealing with the
replica location problem. They have different APIs and semantics,
making difficult to users of different schemes to use them. Large sci-
entific project have often used different approaches for the different
parts of themselves. This context is what has motivated the creation
of an abstraction over the different implementations. The Replica Reg-
istration Service (RSS) [3] is an implementation covering the whole set
of replica location services existing nowadays. This new service pro-

16 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

vides an uniform API to access different RLSs and replica catalogs.
RSS introduces a different approach to deal with replica location. It
uses two different maps for LFNs and PFNs with GUIDs: a LFN-to-
GUID map and a GUID-to-PFN one, as Figure 1.3 shows. The reason
for breaking the LFN-to-PFN map in two pieces is to handle aliases
more efficiently. This way, a set of replicas is globally unique identified
with the GUID, which can be system-assigned, and also it can have
more human-readable aliases to access data. PFNs are really used as
site URLs, in order to profit and cover the possibilities of storage re-
source managers (SRM). With this approach, attributes are assigned
to GUIDs and LFNs can be changed without greater modifications. Of
course, replicated data can be queried by means of LFNs and GUIDs.

Figure 1.3: LFN, GUID and PFNs

1.3 Replica creation

As demand for information increases, centralized servers become a bot-
tleneck. Content providers cope by distributing replicas of their files
to servers scattered throughout the network. Replicas then respond to
local client requests, reducing the load on the central server. Replica
Management refers to the problem of deciding what files should be
replicated, how many replicas of each file to distribute, and where to
place them.

1.3. REPLICA CREATION 17

In a perfect system, replicas are placed near the clients that access
them in order to exploit data locality. Shrinking network distance
decreases access latency and sensitivity to congestion and outages.

Furthermore, exactly enough replicas should exist to handle the
cumulative demand for each file. With too few replicas, servers become
overloaded, and clients see reduced performance. Conversely, extra
replicas waste bandwidth and storage that could be reassigned to other
files, as well as the money spent to rent, power, and cool the host
machine.

When one starts thinking about creating replicas, the first idea
that comes into mind is to create replicas on demand. In Grid
terms, it means that once the job scheduler resolves a job submission
request, the files required by this job are copied to the node where it
has been submitted. This is the basic way of creating file replicas, and
every Data Grid should implement this essential mechanism.

However, the lack of such approaches is that jobs cannot begin the
execution until data has been transferred to the target node, i.e. all
the input data required by the scheduled job is already there.

Therefore, new strategies appeared in the literature to optimize
replica creation in Data Grids. The idea behind these techniques is
creating file replicas in advance, i.e. transfer input data before it is
requested. Then, replicating in advance enables jobs to start their
execution faster. But, if the chosen mechanism is not good enough, it
will be causing useless bandwidth consumption and storage capacity.
So it is not just about replicating in advance but furthermore taking
care about what, where, and how is better to replicate.

Next, in this section, we are going to talk about approaches based
on two of the most significant strategies to create replicas in ad-
vance. This strategies make decisions by means of analyzing prior
events (file access history) and economic models in order to carry out
a distributed and scalable dynamic replication mechanism.

1.3.1 Dynamic replication: Prediction based on prior
events

Replication strategies based on predictive algorithms use data mining
techniques to look for file access patterns from a file access history.
The idea of looking for file access patterns comes from far away in

18 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

the past. For instance in [26] it is presented an approach to predict
file-system actions from prior events. The main goal of the authors is
to optimize an LRU cache by means of prefetching data that is likely
to be accessed in the near future. The authors introduce the idea of
using tries to analyze the filesystem access patterns.

A trie, also known as prefix tree, is an ordered tree data structure
that is used to store an associative array where the keys are usually
strings. Unlike a binary search tree, no node in the tree stores the key
associated with that node; instead, its position in the tree shows what
key it is associated with. All the descendants of any one node have a
common prefix of the string associated with that node, and the root is
associated with the empty string. Values are normally not associated
with every node, only with leaves and some inner nodes that happen
to correspond to keys of interest.

Figure 1.4: Trie sample

In the example shown (Figure 1.4), keys are listed in the nodes
and values below them. Each complete English word has an integer
value associated with it. A trie can be seen as a deterministic finite
automaton, although the symbol on each edge is often implicit in the
order of the branches.

1.3. REPLICA CREATION 19

Some years after, this kind of ideas were introduced to improve file-
system caches, the authors of [27] presented the Thomas M. Kroger’s
algorithm to optimize the way to use tries, and furthermore they de-
tailed how to prune them to provide scalability in terms of memory
usage.

Firstly, a method called Partitioned Context Modeling is intro-
duced, with this algorithm it is possible to manage a trie using in-
dependent partitions, or subtries.

Secondly, it is introduced the Extended Partition Context Mod-
eling that establishes a threshold to determine the probability above
which it makes sense to replicate. The future file access events are pre-
dicted as long as the access probability does not become lower than
the threshold.

In 2006 the authors of [42] presented another mechanism to create
replicas using prediction of future events based on the knowledge about
which users/clients accessed which files in the past. In order to carry
out this prediction, it is handled a trie per user. Moreover, the paper
also present some experiments to determine the threshold values used
to restrict:

• The tries maximum depth

• The minimum probability from which it is decided whether to
replicate a file or not

• And the sequence length to be taken into account to predict the
future file access.

Besides, it is also remarked how to prune the tries dynamically in
order to avoid scalability problems, although the scalability problem
regarding number of users (i.e. number of tries) is pointed to be
addressed as future work.

In [52] it is presented the implementation of a file access predictor
based on the knowledge about the file access history too. But, in this
case, both applications and users are taken into account. Furthermore,
the mechanism proposed do not use a trie, but a knowledge database
where records about the accessed files also have the information about:

• the program

20 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

• the user

• and the sequence of the accessed files (also called successors).

In short, the algorithm takes account about what files will be ac-
cessed from a certain program executed by a certain user after a cer-
tain sequence of files have been accessed. From the evaluation made by
the authors, it seems that saving three possible successors is enough.
Moreover, assuming authors premises to be right, the database does
not present scalability problems because files are just accessed from
five different programs at the most (which sounds reasonable).

Figure 1.5: Multi-tier grid computing

On the other hand, another kind of algorithms based on file access
patterns were proposed to be applied in a multi-tier Data Grid
topology (Figure 1.5). The multi-tier Data Grid concept, which was
first proposed by the MONARC project, aims to model the global
distributed computing for the experiments on the Large Hadrond Col-
lider (LHC) particle accelerator. These experiments are collabora-
tions of over a thousand physics from many universities and institutes

1.3. REPLICA CREATION 21

that produce Petabytes of data per year. The raw data generated by
the experiments is stored in tier-0 (e.g. at CERN), meanwhile the
data analysis is carried out by several national centers (tier-1), many
regional centers (tier-2), institutional centers in tier-3, and end-user
workstations in tier-4. Therefore, the key idea is that data flows from
the upper tiers to the lower ones, by means of a hierarchical topology
that provides an efficient and cost-effective method for sharing data,
computational and network resources.

The multi-tier Data Grid has multiple advantages:

1. It allows thousands of scientists everywhere to access the re-
sources in a common and efficient way

2. The datasets can be distributed to appropriate resources and
accessed by multiple sites.

3. The network bandwidth is used efficiently because most of the
data transfers only use local or national network resources, hence
alleviating the workload of international network links.

4. With the support of the Grid middlewares, the resources located
in different centers and even end-users can be utilized to support
data-intensive computing.

5. The multi-tier structure enables the flexible and scalable man-
agement for data-sets and users.

In 2004 the authors of [48] introduced two dynamic replication
algorithms, called Simple Bottom-Up (SBU) and Aggregate Bottom-
Up (ABU), that were put forward for a multi-tier Data Grid. These
algorithms determine when to perform replication, which file should
be replicated, and where to place the new replica.

In the paper, it is remarked the goal to increase the data read
performance from the perspective of the clients. Then, and assuming
that data access pattern changes from time to time, the authors pro-
posed their algorithms keep track of the system situation to guide the
proper replication by means of looking for the potential popular files.
Therefore, the key idea is once more, analyzing current and past client
access patterns to determine what files will be requested in the near
future.

22 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

The basic idea of SBU algorithm is to create the replicas as close
as possible to the clients that requested the data files with high rates
exceeding a pre-defined threshold (that is used to distinguish the pop-
ular files). But the SBU algorithm processes the records in the ac-
cess history individually and does not study the relations among these
records.

On the other hand, ABU is introduced to improve SBU, because
owing to the characteristics of the multi-tier Data Grid, i.e. every node
only accesses the replicas that are in its ancestor nodes, the locations
of the replica servers and the clients should be carefully considered
when carrying out the replication to fully exploit the abilities of the
replication resources. So the key idea of ABU is to aggregate the
history records to the upper tier step by step till it reaches the root,
and at the end, use this aggregation to predict which files should be
predicted.

1.3.2 Replication as a game: Using economic mod-
els

In [22], authors introduced the idea of basing large-scale replica man-
agement solutions on an economic model. In these economic sys-
tems, individual machines are autonomous-free to choose which repli-
cas they host. They could make such decisions using simple on-demand
algorithms or more complex predictive methods. In fact, each could
use a different algorithm.

An economic approach defines the importance of a request as the
amount the requester is willing to pay. A client provides useful feed-
back about its priorities by offering to pay servers more for certain
replicas.

The economic model also helps a replica system cope with fluc-
tuating demand. As hot spots appear, such as when important news
breaks or a popular web site links to a normally-low-traffic page, the
high demand increases the cost that servers can charge for access to
replicas of the hot content. This increase encourages other servers to
host a replica, distributing the load and sharing the profit.

Similarly, an economy can adapt to the addition or deletion of
machines without intervention from human administrators.

Also, an economy provides an easy way to decide when to add

1.3. REPLICA CREATION 23

new servers to a system. System administrators, like capitalist en-
trepreneurs, can monitor price fluctuations for areas with consistently
high prices, which suggests that client demand exceeds replica supply.

Scalability Replica Management Economies (RMEs) also share the
scalability benefits of cooperative P2P [P2P survey] alternatives:

• Their use of local, greedy control algorithms avoids the compu-
tation and bandwidth bottlenecks that may appear if storage
allocation, network monitoring, and failure detection are per-
formed by a central authority.

• Guarantees through mechanism design. One sub-field of Game
Theory, called Mechanism Design, studies techniques for setting
system rules (algorithms, prices, etc.) in order to induce out-
comes with certain desired properties. These properties may
include cooperation, a balanced budget, and various definitions
of “fairness”.
As a simple example, we could define an economy in which clients
and servers interact using a Second-Price Auction. Each client
submits a bid for replica access; the server then awards access to
the highest bidder but charges the amount bid by the runner-up.
This method guarantees that “rational” clients will bid honestly.
Many generalizations of this simple second-price auction have
been proposed which may prove useful in replica management
economies.

• Benefits in a federated environment. A network of machines is
said to be federated if the machines operate in separate adminis-
trative domains. They may cooperate to attain a common good,
but each is autonomous and primarily concerned with its own
success and profitability.
RMEs fit naturally in this type of environment, which motivates
most of Microeconomics and Game Theory. RMEs explicitly
deal with real trust and administrative boundaries, as well as
real money. They assume that machines may often reject re-
quests, will not always volunteer truthful information, and de-
mand payment proportionate to the work they expend. These
concepts usually must be grafted onto other systems before they
can be deployed in a federated environment.

24 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

• Benefits in a trusted infrastructure. On the opposite end of
the spectrum, one could imagine an environment containing a
single administrative domain. All machines cooperate fully, ac-
cepting external storage and retrieval requests for the common
good.Despite their apparent differences, both content distribu-
tion networks and pure, cooperative P2P systems assume this
environment. The former tend to employ a more global alloca-
tion algorithm and possibly restrict the set of machines that ini-
tiate the storage requests, but both approaches rely on the same
inter-machine cooperation. In contrast, machines in a replica
management economy accept external requests only when paid
enough to make the action worthwhile. There is no need in this
environment for machines to maintain individual profitability;
however, this restriction on cooperation can improve system ro-
bustness. Unbounded cooperation, although conceptually simple
and morally pleasing, allows a single machine to reduce the avail-
ability of many others. Poorly configured or broken machines
may accidentally flood the system with unnecessary storage re-
quests. Compromised machines may launch Denial of Service at-
tacks. Or, perhaps more likely, greedy users will consume more
resources than they should.

In an RME, faulty or malicious machines must pay for service,
and their funds are finite. Overloaded machines can raise their
prices until demand drops or the failed machines run out of
money. Thus, unlike more trusting models, an RME bounds
the impact of failure or active attack. One could impose a sim-
ilar bound on any replica management system; however, fixed
bounds can be overly restrictive. They limit the flexibility of
machines that are functioning perfectly yet require a great deal
of resources. In an RME, the limit is soft; a machine can always
acquire access to a replica if is willing and able to pay enough.
In Game Theory, this property is called consumer sovereignty.

• Benefits in the Internet. The Internet is arguably the most im-
portant environment to consider when designing a large-scale
replica system. Like many networks, it is neither fully coop-
erative nor fully federated; it contains many competitive do-
mains, each containing machines that cooperate more or less

1.3. REPLICA CREATION 25

completely. One could treat domains as opaque units and only
impose a replica management economy among them. This ap-
proach would allow competitors to share resources safely. One
could also expose the machines in each domain and extend the
economy to handle intra-domain interactions as well. As shown
above, the economic model provides interesting benefits even
within trusted domains. Machines could still be programmed to
favor others from their own domain. The RME does not prevent
such coalitional activity; however, increasing the dependencies
between machines decreases the robustness benefits of an RME.
As in the real world, tying a greater portion of one’s income or
output to a favored trading partner or single resource is often
risky. The lessons from Economics must be considered when
programming members of an RME.

In [12] authors proposed an approach based on economic model for
optimising file replication in a Data Grid. In short, in the model there
are two main classes of actors. Computing Elements (CEs) have the
goal of making data file available for access to Grid jobs on the site
where they are executing. CEs try to purchase the cheapest replicas
of needed files by interacting, via an auction protocol, with Storage
Brokers (SBs) located in the Grid sites. SBs have the goal of maximis-
ing revenues they can obtain by selling files to CEs or other SBs. In
the economic model, the authors make the assumption that the use-
fulness of a file is proportional to the revenue a SB can obtain from
it. SBs have to decide whether replicating a file to the local site is a
worthwhile investment. Since Grid sites have finite storage space, this
could also result in deleting other files. In order to make a replication
decision, SBs may use various strategies. Specifically, authors propose
the use of a prediction function that estimates the future revenue of
a stored file based on the past revenue of this file and of files with
similar contents.

In [11] authors, also related with the previous ones, defined two
types of such prediction functions and presented some experimental
evaluation that they have performed on them. Both functions use
for their prediction logs of file requests, that jobs have submitted to
the site, but assume different statistical models for the historic data
(either using a binomial distribution or a normal one).

26 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

Finally, in [6] the same authors evaluate their approach with a
well-known Data Grid simulator. Both, in the case of on-demand
replication and in-advance replication, the wished file is requested by
means of using the auction protocol to bid for the cheapest replica.
The file costs are proportional to the time needed to retrieve them,
which depends on available network bandwidth between Grid sites.
Furthermore, authors also mentioned a new improvement: replication
can be triggered to third party sites (sites where the file was not ini-
tially needed) by means of nested auctions. This way the data migrate
towards the areas the data is most likely to be requested and also re-
ducing the bottleneck caused by only considering the requester site for
replication (the nearest SB to the CE).

1.4 Replica removal

The replication of data allows to reduce the access time to data and
their availability. However, replication contains an intrinsic issue: the
greater the level of replication, the bigger the occupied storage space
is, and in consequence, less available space for other new replicas is
left. There is also a second hidden issue, consequence of the first one:
once a host is out of space, is not able to run any job, if it requires
access to data non-located in the host and these data cannot be stored
on it.

The mentioned problem has a lot of relevance, because replica
placement is directly related to the execution time required for ap-
plications, as you could see before.

This problem owns a huge difficulty to be solved, since information
about why the replica was created and limitations avoiding deletion
of specifics replicas must be had in mind.

The traditional approach have been to assign the responsibility
of replica removal to system administrators. These people are able
to determine what replicas can be deleted and how many of them
are going to be deleted in order to get the required space. As you
can see, this approach is not scalable, neither admissible in current
grid systems, where replication of data can involve thousands of files
distributed among different organizations over the world.

The complexity of replica deletion has motivated the development

1.4. REPLICA REMOVAL 27

of different autonomous mechanisms. These mechanisms are able to
select useless replicas and to free the space they take, taking different
information into account, like time to access, number of accesses, value
of the replica or recoverable storage space.

One of the most commonly used techniques is the setting up of a
threshold. Thresholding can be used for automatic deletion and repli-
cation as well. [45] shows a system which generates replicas automat-
ically and also allows the user to create replicas manually. When the
system detects that replication threshold was exceeded, the deletion
is performed. In this case, the system always keeps the manually-
generated replicas and only the automatically-created replicas are re-
moved, until the the number of replicas is below the established thresh-
old. The decision about what replica will be erased is based on the
number of accesses. When the number of accesses in a latest period
of time is below other threshold, then the replica is erasable. As you
can see, this system uses the classical LRU approach.

In [38], other system managing the deletion of replicas with thresh-
olding is shown, as well. In this case, as it was mentioned before, the
threshold technique is used for both deletion and replication. Regard-
ing the deletion, every replica has an access counter and an affinity
value. When the number of accesses falls below the threshold, the
replica is deleted. In order to avoid the deletion of every replica, the
system uses a protocol assuring that the last replica won’t be erased.
Without the latter mechanism, automatic elimination of replicas could
cause data loss if data is not recently used.

Other approach, different to thresholding, for replica removal is
the based on economic models. In this case, replicas have an economic
value, real or fictitious, which have to be optimized. Systems using
this technique contain a set of algorithms taken from the stock ex-
change. In [12], an economic-based system is presented. The system
takes account of costs of replication and its maintenance and reachable
profits of replica suppression, using an historical log of accesses. Once
the system has decided if deletion is beneficial for it, less significant
replicas are deleted.

Also related with replica deletion, although more oriented to re-
solved consistency of replicas, there is the system shown in [4]. In this
case, there is not any implicit mechanism for erasing data, but there
is an implicit deletion of replicas when a replica is modified, which

28 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

will be the closest to the client. The system performs a deletion of
every outdated replica when a client writes. Implicitly, this behaviour
is favouring the liveliness of the replicas with more accesses, since once
a replica is required it will be created again.

Besides LRU and economic approaches, replica deletion taking ac-
count of the age of them is often used. This approach only cares of
how old a replica is and prioritizes the deletion of newest ones. In [5],
a comparison among the three former strategies is shown, although it
is evaluated in a simulator of grid environments. The economic one is
based in bids for the replica selection, where the price is the transfer
cost. Results show that the three policies get a similar improvement
in the overall system though the economic one could be parametrized
and adapted dynamically to the observed distribution of requests.

In [16] it is proposed the use of the longest time unused (LTU)
policy and another novel one based on event occurrence prediction
(EOP). The latter one takes account of the relations among different
events existing in the history of the whole replica system to make the
decision of removal. However, results of the experiments show that
LRU strategy is the best one in general cases.

Other totally different approach is the shown in [34]. Instead of as-
signing specific characteristics to replicas, only the overall performance
is considered. In this case, the system computes the best placement for
replicas using a genetic algorithm. If the replication scheme is changed,
actions for getting the new one are performed, i.e. new replicas are
done and old ones are transferred or removed.

1.5 Consistency and coordination

Data Grids are currently proposed solutions to large scale data man-
agement problems including efficient file transfer and replication. Large
amounts of data and the world-wide distribution of data stores con-
tribute to the complexity of the data management challenge. Many
architecture proposals and prototypes deal with replication of read-
only files because it is known that in most of the cases the replication
is used for read-only data. However, in some scenarios could be use-
ful to address the replica synchronisation between replicas to manage
replicas of writable files.

1.5. CONSISTENCY AND COORDINATION 29

In principle, two mainly different replication approaches are known:
synchronous and asynchronous replication.

Whereas synchronous replication aims for keeping all the replicas
permanently synchronized, asynchronous replication allows for a cer-
tain delay in updating replicas.

Based on the relative slow performance of write operations in a
synchronously replicated environment (due to elapsed time updating
replicas), the database research community is looking for efficient pro-
tocols for asynchronous replication accepting lower consistency.

Several replication use cases are possible and the amount of read
and write access to data influences the replication policy. It is very
likely that various boundary conditions will affect the replication and
allow for simplifications.

• read-only data: The simplest case is if data is read-only,where
data may be copied at any point in time from any replica to
any other place. This requires no locking nor any other cou-
pling (except for the replica catalogue) of replicas. Note it is
probably very hard to ever remove the readonly property from a
file in a running system without risking to compromise readers.
Therefore, applications would be required to insure that data
will never need any change.

• writable data: Once we allow write access to the data, it is
important to have a clear policy that defines who is allowed to
write/change data. If ownership is assigned to files (replicas),
one policy can be that only the owner is allowed to modify the
original version of a file (master copy). For a data item which
can be updated (writable) we distinguish between permanent
and varying ownership.

– well defined file ownership (“master-slave case”): Only one
well defined entity in the system is allowed to modify a
particular piece of data (e.g. a file). As a result, the repli-
cation is not symmetric any more between all replicas in
the system. The process of determining which is the most
up-to-date version in the system is not required. Only the
information “who is the owner” needs to be propagated to

30 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

all slave replicas. In case of data access, only one well de-
fined node needs to be contacted to obtain the most recent
version of the data. This is only true for write operations.
For a read access, any replica can be selected since the
master-slave approach guarantees that all copies are up-to-
date. In detail, all write and update requests are forwarded
to the master which in turn is responsible for synchronising
all the slaves. Read requests can be served by any replica.

– varying writers (no central control of replicas): This is the
most general and complex case. Several update operations
need global agreement between all replicas and will also try
to contact all replicas to obtain a quorum. Quorum sys-
tems are commonly used as a mechanism to get the right,
for example, to update a replica. The current distributed
database research proposes several solutions to this prob-
lem.

In [17] is presented a new Grid service, called Grid Consistency Ser-
vice (GCS), that sits on top of existing Data Grid services and allows
for replica update synchronisation and consistency maintenance. The
paper presents some models for different levels of consistency provided
to the Grid user using as data sources both databases and filesystems:

• Consistency Level -1 (Possibly inconsistent copy): The file replica
is created using a trivial file copy concurrently with ongoing write
operations. The resulting file does not necessarily correspond to
a state of the original file at any point in time and internal data
structures may be inconsistent. There are several well known
ways to tackle this problem:

– standard locking: obtain a file write lock - perform the file
copy - release the lock.

– optimistic locking: In case of low probability of lock con-
tention, one could copy without getting a lock and test the
modification date of the file after the copy. In case of con-
flict, one gets a lock and retries.

– snapshots: One could use the database or file-system ser-
vices to produce a consistent file snapshot (i.e. keep an

1.5. CONSISTENCY AND COORDINATION 31

old version of the file until the copy process is finished, but
allow writers already to modify).

• Consistency Level 0 (Consistent File Copy): At this consistency
level, the data within a given file corresponds to a snapshot of
the original file at some point in time. Again, we have the dirty
read problem. In this case, it is still unclear if a file copy in this
intermediate state would be usable by a remote Grid user.

There are again several mechanisms to obtain such a replica:

– locks: one obtains a read lock to exclude other writers.
– snapshot: a consistent snapshot is maintained for the du-

ration of the copy. This would allow a concurrent writer to
continue its work.

• Consistency Level 1 (Consistent Transactional Copy): Each replica
has been produced at a time when no write transactions were ac-
tive and can be used by other clients without internal consistency
problems.

• Consistency Level 2 (Consistent Set of Transactional Copies):
If the replicas have been produced as part of a single transac-
tion, the main consistency problem left is that replicated data
might not be up to date, once the remote node starts working
on it. Replica and original could diverge. This in particular
poses problems if it is required to merge the data changes from
different sites to the same data.

• Consistency Level 3 (Consistent Set of up-to-date Transactional
Copies): This is basically what is called a “replicated federation”
in Objectivity/DB where a replica stays under the control of the
database system and depending on the database implementation,
read/write locks may have to be negotiated.

In a Grid system, such a complex replication environment can
only be attained if all data access operations use a common in-
terface and do not allow non-Grid access like local fseek on files.
This vision would mean that the Grid is a distributed database
management system on its own but it may not be feasible for
most of the Data Grid applications.

32 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

Read or write access to replicas is always atomic with a con-
ventional database transaction. This is a very strict model and
known as synchronous replication which might be useful for some
meta data but also may impose severe performance and usability
constraints.

Besides previously explained consistency mechanisms, there are
schemes with specific levels of consistency, like the used on by Google
file system [37]. In this case, all the consistency control is handled by
a master, which also maintains all the metadata related to. Replicas
are read-only but consistency about locations must be guaranteed.

Other different mechanism for replica consistency is the deletion
of every existing replica when a client writes on one. This mechanism
is pretty naive but it can be found in [4]. Since there won’t be any
replica to update after a write operation, the system will always be
in a consistent state. After that operation, replicas will be generated
on-demand to client requests. The written replica will be the closer
one to writer client.

One commonly found approach is the based on version numbers
one. It is used in [28] for instance. The mechanism assigns a version
number to every replica and each update operation will increase this
number. With this technique, greater version number is, more updated
replicas are. Quorum can be used for coordination of versions numbers
but it is not mandatory if replicas can be outdated.

This last scheme is related to optimistic replication [43], where ev-
ery operation is allowed and consistency issues are resolved only when
conflicts are detected. This approach have been proved to be very
efficient in systems where concurrent write operations are unusual, as
most typical data grids. In this case, conflicts can often be solved au-
tomatically. The improvement is due to the characteristics of locking
protocols. As [9] shows, this kind of protocols adds a considerable
overhead that can be avoided with lazy propagation of updates.

1.6. OTHER ISSUES 33

1.6 Other issues

1.6.1 Data replication complexity in Data Grids

In [15], authors show that data replication on data grids is a NP-
hard and non-approximable optimization problem. Authors focus the
analysis on approach to data replication whereby files are replicated
in advance in order to make all sites as suitable for job executions as
possible, but there is no replication on-demand (so this simplify the
model, since it is not needed to simulate the job scheduling).

Firstly, the authors built a mathematical model of a grid and then
formally define GDR, the optimization problem of data replication on
grids with the explored approach. GDR can also be used as a formal
framework for analysing the computational complexity of static data
replication, and a starting point for the design of new algorithms for
solving it.

Secondly, they studied some related problems such as:

• the file allocation problem: concerned with replicating a single
file on a given network in order to improve read requests to the
file. Since there are also write requests to the file, its replicas
have to be updated in order to maintain data consistency. The
problem is to find an optimal replica allocation, which minimizes
the time for maintaining read and write requests. The difference
between this problem and the GDR is:

– in the abscence of write requests

– the possibility of multiple objects (e.g. files)

– in capacity constraints of sites

• the web server replica placement: where k server replicas have
to be placed on a given network so that network communication
load is minimized. This problem also manages only one object
(a server in this case); however, no updating is needed now.
Notice that a fixed number of replicas (i.e. mirrors) have to be
allocated, while in GDR the number of replicas is not fixed. The
web server replica placement problem can be stated as a facility
location problem, in particular the k-median problem.

34 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

• the page migration/replication problem:This problem is also con-
cerned with a single object (i.e. the page) and is not limited by
capacity constraints (e.g. memory sizes) as is the GDR.

Then the authors described the goal of the GDR as distributing the
replicas of objects (i.e. files) across the Grid, in such a way that every
site will offer fast access (i.e. low transfer cost) to at least one replica
of each object. Since by assumption all accesses are read requests, fast
access is needed to at least one replica of each object. In this way,
many different applications can be hosted on each site. Hence, the
goal is looking for a function that assigns to each object a subset of
sites. Feasible functions must take account of the storage capacities of
sites, and the transfer costs in terms of bandwidth between source and
target, and the size of the file. Finally, authors make a reduction to
an integer programming and also carry out some simplifications, but
anyhow, the problem is demonstrated to be:

• NP-hard: since it is unlikely that an exact polynomial time al-
gorithm will be found to solve the problem.

• Non-approximable: which means that for large instances the
only reasonable approach is the development of good heuristic
methods.

1.6.2 Optimal Placement of Replicas

It has been shown that file replication can improve the overall Data
Grid performance, but although there is a fair amount of work on file
replication in Grid environments, most of this work is focused on cre-
ating the underlying infrastructure for replication and mechanisms for
creating/deleting replicas. Therefore, in order to obtain more gains
from replication, works on strategic placement of the file replicas ap-
peared.

In 2004 the author of [1] studied the problem of replica placement
in a Data Grid. They proposed a replica placement service called
Proportional Share Replication (PSR) and he evaluated it simulating
a multi-tier Data Grid environment. The key idea of the PSR is that
each file replica should service approximately equal number of request
rates in the system. The goal is to place the replicas on a set of sites

1.6. OTHER ISSUES 35

systematically selected such that files access parallelism is increased
while the access costs are decreased. In the paper, an evaluation is
presented by means of comparing the PSR algorithm with a classical
replica location policy based on affinity, i.e. data would be replicated
on or near the client machines where the file is mostly accessed.

In 2006 the authors of [32] pointed that the PSR algorithm did not
guarantee to find the optimal solution. Therefore, they proposed a new
algorithm to address the replica placement problem given the traffic
pattern and locality requirements. This algorithm finds the optimal
locations for the replicas so that the workload among these replicas is
balanced. They also present another algorithm to decide the minimum
number of replicas required when the maximum workload capacity of
each replica server is known.

To implement both algorithms, authors took the following issues
into account:

• The replicas should be placed in proper server locations so that
the workload on each server is balanced. A naive placement
strategy may cause “hot spot” servers that are overloaded, while
other servers are under-utilized.

• The optimal number of replicas should be chosen. The denser
the distribution of replicas is, the shorter the distance a client
site needs to travel to access a data copy. However, maintain-
ing multiple copies of data in Grid systems is expensive, and
therefore, the number of replicas should be bounded.

Clearly, optimizing access cost of data requests and reducing
the cost of replication are two conflicting goals. Finding a good
balance between them is a challenging task.

• Consideration of service locality. Each user may specify the min-
imum distance he can allow from him to the nearest data server.
This serves as a locality assurance that users may specify, and
the system must make sure that within the specified range there
does exist a server to answer the request.

As you can see, these algorithms are based on the assumption of
a multi-tier Data Grid environment. Although it is one of the most

36 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

common topologies used by the Grid community, studies based on
other topologies are needed in order to cover another use cases.

In [39] the authors use a non-tree topology as a Grid. They examine
different replica placement strategies based on the expected utility
and risk. Algorithms proposed based on utility select a replica site
assuming that future requests and current load will follow current
loads and user requests. On the other hand, algorithms using a risk
index expose sites far from all other sites and assume a worst case
whereby future requests will primarily originate from there.

The authors evaluate their four algorithms by comparison with two
previous replication strategies (BestClient and Cascading). Specifi-
cally, the resultant six algorithms are:

1. MinimizeExpectedUtil : considers each node and calculates the
expected utility. The node with the lowest expected utility is
selected. The replica is then placed at that node.

2. MaximizeTimeDiffUtil : considers each site S and determines the
time based distance between the best replica site (with respect
to S) and the other sites. The site with the maximum distance
is the closest site for S. Thus, placing a replica at the closest
site, the differential time is saved. The MaximizeTimeDiffUtil
is calculated by multiplying the maximum time difference by
the number of requests site S makes for given time period. The
site with the maximum time difference utility is selected and
the replica is placed on the site generating the maximum time
difference.

3. MinimizeMaxRisk : for each site, the distance from it to other
sites holding replicas is calculated so the minimum distance among
them is identified. The risk index for each site is calculated by
multiplying the file requests by the minimum distance. It has
been shown that file replication can improve the overall Data
Grid performance, but although there is a fair amount of work
on file replication in Grid environments, most of this work is
focused on creating the underlying infrastructure for replication
and mechanisms for creating/deleting replicas. Therefore, in or-
der to obtain more gains from replication, works on strategic
placement of the file replicas appeared.

1.6. OTHER ISSUES 37

4. MinimizeMaxAvgRisk : calculates the average risk for each site
and multiplies by the file requests. The replica is placed where it
is obtained the highest average index. This algorithm is in fact
a variation of the previous one.

5. BestClient : places the replica at the site that has maximum
requests for file x (affinity).

6. Cascading: places the replica on the path of the best client.

Eventually, although the topology chosen is very simple (just eight
nodes), they shown promising results for their algorithms, except for
the MaximizeTimeDiffUtil that resulted to be a variation of Cascading
that also performs well in the case that users requests contain some
geographical locality. Therefore, considering them would be a good
idea for current and future replica placement mechanisms.

1.6.3 Scheduling

Another issue that could be interesting regarding replica management
strategies in Data Grids, is how this mechanisms affect the behaviour
of the job schedulers. Usually, job schedulers tend to use data locality
as a factor to take into account in their scheduling decisions, so that
jobs are submitted to nodes that already have mostly of the input data
these jobs need. Using this kind of policy, helps the job scheduler to
minimize the bandwidth consumption by means of minimizing data
transfers among the network, and also to reduce the waiting time
elapsed to the time the job is able to start the execution (when the
input data is available in the node).

In distributed and parallel systems, the widely used performance
metrics for job scheduling include turnaround time, throughput, uti-
lization, makespan and slowdown.

Turnaround time measures how long a job takes from its submis-
sion to completion. As the system utilization and throughput are
largely determined by the job arrival process and the job resources
requirements rather than by the scheduler, they are only suitable for
closed systems in which every job is re-submitted to the system when
it terminates. Makespan is used for batch mode scheduling. Slowdown
is defined as the job turnaround time divided by its execution time.

38 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

In [47] the authors proposed a Data Grid architecture supporting
efficient data replication and job scheduling. The computing sites are
organized into individual domains according to the network connec-
tion, and a replica server is placed in each domain.

There are two centralized replication algorithms with different replica
placement methods and a distributed replication algorithm are put
forward.

The centralized algorithms are characterized to use a replication
master running in the system which aggregates and summarizes all
the collated historical information coming from specific nodes (called
replica servers) about: number of accesses (NOA) per file (FID). Then,
the centralized replication algorithm is invoked by the replication mas-
ter which commands the replica servers to carry out the replication.
A threshold for NOA is used in the algorithm to distinguish popular
data files, and only the files that have been accessed more than this
threshold times will be replicated. The more the NOA value is above
the threshold, the more number replicas are done for the related FID.
Finally, two replica placement policies are presented for the centralized
algorithms:

• Response-time oriented replica placement method called RTPlace,
which takes account of the CPU and the storage capacities of the
nodes.

• Server merit oriented replica placement method, called SMPlace,
which takes account of the locality of the target nodes relative
to all domains.

On the other hand, in the distributed algorithm, the historical
records are exchanged among all replica servers. Every replica server
aggregates NOA over all domains for the same data file and creates
the overall data access history of the system. At intervals, each replica
server will use the replication algorithm to analyze the history and
determine data replications.

Regarding scheduling, authors introduce three heuristics.

• Shortest turnaround time. For each incoming job, the shortest
turnaround time (STT) heuristic estimates the turnaround time
on every computing site and assigns the job to the site that
provides the shortest turnaround time.

1.7. DISCUSSION / CONCLUSIONS 39

• Least relative load. Assigns the new job to the computing site
that has the least relative load (i.e. the relationship between
quantity of jobs and computing capability).

• Data Present. Takes the data location as the major factor when
assigning the job. According to different situations of the data
file required by the job.

Finally authors evaluate the different replication algorithms with
the different job scheduling algorithms using a simulator built by them
called XDRepSim. They conclude that centralized replication can
shorten the job turnaround time greatly. In particular, the policy of
STT + CDR (with RTPlace) exhibits remarkable performance under
various conditions of system environment and workload.

1.7 Discussion / Conclusions

In this chapter we have presented the state of the field about data
replication mechanisms in distributed environments. As you can see,
we have focused on Grids since they are the current trend in the liter-
ature, but most of the described algorithms, strategies and techniques
are also appliable in other distributed environments, such as clusters
or P2P systems.

The discussion has been centered in the key issues that must be
considered in order to achieve scalable and suitable replication man-
agement systems.

Firstly, we have presented the most important techniques and strate-
gies to deal with location and selection of replicas that are spread
among several nodes.

Secondly, we have discussed about how to create these replicas this
section in two main branches.

On one hand, we have introduced predictive algorithms based on
prior events. These algorithms apply data mining on file access his-
tories in order to predict the near future files that are going to be
accessed. Therefore, they proceed creating replicas taking these pre-
dictions into account.

On the other hand, we have also described the current trend on
economy-based strategies that provide replication mechanims based

40 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

on economic models. The key advantage of these models is that they
tend to be optimal in long-term.

Thirdly, we have addressed the issue about replica deletion, its
relevance and some techniques to deal with it. The key problem is
that the more quantity of replicas the system has, the more saturated
storage resources are, and therefore, the system becomes unefficient
since future replicas, likely to be more useful than current ones, cannot
be created because of lack of space.

Fourthly, we have pointed the problem of consistency among repli-
cas. When one decides to spread several replicas of the same file
among the nodes of a distributed environment, they are likely to be
accessed concurrently by different users (i.e. different applications,
jobs, processes, etc.). Therefore, if these files are wished to be writable,
well-known coherence troubles appear and different srategies and tech-
niques are available in order to reach different levels of consistency
according to system requirements.

Finally, we have presented a section that ponts other issues re-
lated to replication management. Specifically, we have addressed some
papers that talk about the complexity of the replication problem in
distributed environments, whichs tends to be NP-hard; other that de-
scribe algorithms to deal with the problem about deciding the optimal
placement of replicas; and finally, the influence of file replication on
job schedulers of distributed systems.

1.8 Future Trends

Replica management is a mature research topic as we showed along this
chapter. However some issues are not resolved yet. Future researches
in replica management systems aim at the improvement of current
systems for getting a better performance and an easier maintenance.

Current trends in replica selection are based on intelligent agents
and self-managing systems, taking in account the dynamism of grids
and their variable characteristics. Future replica selection system will
measure available bandwidth, latencies of networks and the impact of
scheduling decisions in order to achieve a better performance.

Regarding replica creation and replica removal, future trends will
be inspired in economics and bio-inspired algorithms, able to respond

1.8. FUTURE TRENDS 41

in a fast way to the requirements of storage space, availability, fault-
tolerance and QoS. Both areas are related to replica placement and
selection, so improvements on these ones will influence those ones.

The main open issue in current replica management services is the
consistency. Current system usually limits the replication to creation
and read-only accesses. This is limiting the use of grid technologies
in this always-changing field, so new systems dealing with consistency
in systems with several concurrent writers and readers over the same
data will be developed in the close future. Consistency issues are old-
knowns since 70’s and their solutions can be also applied to grid data
management.

42 CHAPTER 1. REPLICA MANAGEMENT IN THE GRID

Bibliography

[1] Jemal H. Abawajy. Placement of file replicas in data grid envi-
ronments. In Marian Bubak, G. Dick van Albada, Peter M. A.
Sloot, and Jack Dongarra, editors, International Conference on
Computational Science, Computational Science - ICCS 2004, 4th
International Conference, Kraków, Poland, June 6-9, 2004, Pro-
ceedings, Part III, volume 3038 of Lecture Notes in Computer
Science, pages 66–73. Springer, 2004.

[2] William E. Allcock, Ian T. Foster, Veronika Nefedova, Ann L.
Chervenak, Ewa Deelman, Carl Kesselman, Jason Lee, Alex Sim,
Arie Shoshani, Bob Drach, and Dean Williams. High-performance
remote access to climate simulation data: a challenge problem for
data grid technologies. In SC, page 46, 2001.

[3] Alex Sim Arie Shoshani and Kurt Stockinger. Rss: Replica reg-
istration service for data grids, 2005.

[4] Awerbuch, Bartal, and Fiat. Competitive distributed file alloca-
tion. INFCTRL: Information and Computation (formerly Infor-
mation and Control), 185, 2003.

[5] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Mil-
lar, Kurt Stockinger, and Floriano Zini. Simulation of dynamic
grid replication strategies in optorsim. In Manish Parashar, ed-
itor, Grid Computing - GRID 2002, Third International Work-
shop, Baltimore, MD, USA, November 18, 2002, Proceedings, vol-
ume 2536 of Lecture Notes in Computer Science, pages 46–57.
Springer, 2002.

43

44 BIBLIOGRAPHY

[6] William H. Bell, David G. Cameron, Ruben Carvajal-schiaffino,
A. Paul Millar, and Kurt Stockinger. Evaluation of an economy-
based file replication strategy for a data grid, February 13 2003.

[7] William H. Bell et al. Optorsim: A Grid simulator for studying
dynamic data replication strategies. The International Journal of
High Performance Computing Applications, 17(4):403–416, Win-
ter 2003.

[8] Bloom. Space/time trade-offs in hash coding with allowable er-
rors. CACM: Communications of the ACM, 13, 1970.

[9] Yuri Breitbart and Henry F. Korth. Replication and consis-
tency: Being lazy helps sometimes. In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 173–184, Tucson, Arizona, 12–15 May
1997.

[10] Min Cai, Ann Chervenak, and Martin R. Frank. A peer-to-peer
replica location service based on a distributed hash table. In SC,
page 56. IEEE Computer Society, 2004.

[11] L. Capozza, K. Stockinger, and F. Zini. Preliminary Evaluation
of Revenue Prediction Functions for Economically-Effective File
Replication. Technical Report DataGrid-02-TED-020724, CERN,
Geneva, Switzerland, July 2002.

[12] Mark Carman, Floriano Zini, Luciano Serafini, and Kurt
Stockinger. Towards an economy-based optimisation of file ac-
cess and replication on a data grid. In CCGRID, pages 340–345.
IEEE Computer Society, 2002.

[13] Ann L. Chervenak, Ewa Deelman, Ian Foster, Leanne Guy,
Wolfgang Hoschek, Adriana Iamnitchi, Carl Kesselman, Peter
Kunst, Matei Ripeanu, Bob Schwartzkopf, Heinz Stockinger, Kurt
Stockinger, and Brian Tierney. Giggle: A framework for con-
structing scalable replica location services. In SC’2002 Confer-
ence CD, Baltimore, MD, nov 2002. IEEE/ACM SIGARCH.

BIBLIOGRAPHY 45

[14] Ann L. Chervenak, Naveen Palavalli, Shishir Bharathi, Carl
Kesselman, and Robert Schwartzkopf. Performance and scalabil-
ity of a replica location service. In HPDC, pages 182–191. IEEE
Computer Society, 2004.

[15] Uros Cibej, Bostjan Slivnik, and Borut Robic. The complexity of
static data replication in data grids. Parallel Computing, 31(8-
9):900–912, 2005.

[16] Hluchy L. Ciglan M. Towards scalable grid replica optimization
framework. In Parallel and Distributed Computing, 2005. ISPDC
2005., pages 43–50, 2005.

[17] Dirk Düllmann and Ben Segal. Models for replica synchro-
nisation and consistency in a data grid. In HPDC ’01: Proceedings
of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10’01), page 67, Washington, DC,
USA, 2001. IEEE Computer Society.

[18] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe,
Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi,
G. Bruce Berriman, John Good, Anastasia C. Laity, Joseph C.
Jacob, and Daniel S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

[19] Jun Feng and Marty Humphrey. Eliminating replica selection -
using multiple replicas to accelerate data transfer on grids. In
ICPADS, pages 359–366. IEEE Computer Society, 2004.

[20] Corina Ferdean and Mesaac Makpangou. A scalable replica selec-
tion strategy based on flexible contracts. In WIAPP ’03: Proceed-
ings of the The Third IEEE Workshop on Internet Applications,
page 95, Washington, DC, USA, 2003. IEEE Computer Society.

[21] Ian T. Foster and Carl Kesselman. The globus project: A status
report. In Heterogeneous Computing Workshop, pages 4–18, 1998.

[22] Dennis Geels and John Kubiatowicz. Replica management should
be A game, July 26 2002.

46 BIBLIOGRAPHY

[23] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha.
The dangers of replication and a solution. In H. V. Jagadish and
Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
pages 173–182, Montreal, Quebec, Canada, jun 1996.

[24] The Earth Systems Grid.

[25] Leanne Guy, Peter Kunszt, Erwin Laure, Heinz Stockinger, and
Kurt Stockinger. Replica management in data grids, jul 2002.

[26] Thomas M. Kroeger and Darrell D. E. Long. Predicting file-
system actions from prior events. In Proceedings of the USENIX
Annual Technical Conference, pages 319–328, Berkeley, Jan-
uary 22–26 1996. Usenix Association.

[27] Thomas M. Kroeger and Darrell D. E. Long. Design and imple-
mentation of a predictive file prefetching algorithm. In USENIX,
editor, Proceedings of the 2001 USENIX Annual Technical Con-
ference: June 25–30, 2001, Marriott Copley Place Hotel, Boston,
Massachusetts, USA, pub-USENIX:adr, 2001. USENIX.

[28] John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwin-
ski, Patrick R. Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean C. Rhea, Hakim Weatherspoon, Westley Weimer, Chris
Wells, and Ben Y. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In ASPLOS, pages 190–201, 2000.

[29] Peter Z. Kunszt, Erwin Laure, Heinz Stockinger, and Kurt
Stockinger. Advanced replica management with reptor. In Roman
Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy Was-
niewski, editors, PPAM, volume 3019 of Lecture Notes in Com-
puter Science, pages 848–855. Springer, 2003.

[30] Houda Lamehamedi, Zujun Shentu, Boleslaw K. Szymanski, and
Ewa Deelman. Simulation of dynamic data replication strategies
in data grids. In 17th International Parallel and Distributed Pro-
cessing Symposium (IPDPS-2003), pages 100–100, Los Alamitos,
CA, April 22–26 2003. IEEE Computer Society.

BIBLIOGRAPHY 47

[31] Houda Lamehamedi, Boleslaw Szymanski, Zujun Shentu, and
Ewa Deelman. Data replication strategies in grid environments,
June 18 2002.

[32] Yi-Fang Lin, Pangfeng Liu, and Jan-Jan Wu. Optimal placement
of replicas in data grid environments with locality assurance. In
ICPADS, pages 465–474. IEEE Computer Society, 2006.

[33] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor -
A hunter of idle workstations. In ICDCS, pages 104–111, 1988.

[34] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive
distributed data replication using genetic algorithms. J. Parallel
Distrib. Comput, 64(11):1270–1285, 2004.

[35] Anirban Mondal and Masaru Kitsuregawa. Effective dynamic
replication in wide-area network environments: A perspective. In
DEXA Workshops, pages 287–291. IEEE Computer Society, 2005.

[36] LIGO Laser Interferometer Gravitational Wave Observatory.

[37] Sean Quinlan. The google file system. In The Conference on
High Speed Computing, page 24, Salishan Lodge, Gleneden Beach,
Oregon, April 2006. LANL/LLNL/SNL.

[38] M. Rabinovich, I. Rabinovich, and R. Rajaraman. A dynamic
object replication and migration protocol for an internet hosting
service. In 19th International Conference on Distributed Comput-
ing Systems (19th ICDCS’99), Austin, Texas, May 1999. IEEE.

[39] Rashedur M. Rahman, Ken Barker, and Reda Alhajj. Replica
placement in data grid: Considering utility and risk. In ITCC
(1), pages 354–359. IEEE Computer Society, 2005.

[40] Rajesh Raman, Miron Livny, and Marvin H. Solomon. Match-
making: Distributed resource management for high throughput
computing. In HPDC, page 140, 1998.

[41] Matei Ripeanu and Ian T. Foster. A decentralized, adaptive
replica location mechanism. In HPDC, page 24. IEEE Computer
Society, 2002.

48 BIBLIOGRAPHY

[42] Jih-Sheng Chang Ruay-Shiung Chang, Ning-Yuan Huang. A pre-
dictive algorithm for replication optimization in data grids, 2007.

[43] Saito and Shapiro. Optimistic replication. CSURV: Computing
Surveys, 37, 2005.

[44] Arie Shoshani, Alexander Sim, and Junmin Gu. Storage resource
managers: essential components for the Grid, pages 321–340.
Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[45] Renata Slota, Darin Nikolow, Lukasz Skital, and Jacek Kitowski.
Implementation of replication methods in the grid environment.
In EGC, pages 474–484, 2005.

[46] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages 149–160,
2001.

[47] Ming Tang, Bu-Sung Lee, Xueyan Tang, and Chai Kiat Yeo. The
impact of data replication on job scheduling performance in the
data grid. Future Generation Comp. Syst, 22(3):254–268, 2006.

[48] Ming Tang, Bu-Sung Lee, Chai Kiat Yeo, and Xueyan Tang. Dy-
namic replication algorithms for the multi-tier data grid. Future
Generation Comp. Syst, 21(4):775–790, 2005.

[49] Sudharshan Vazhkudai, Steven Tuecke, and Ian T. Foster. Replica
selection in the globus data grid. CoRR, cs.DC/0104002, 2001.

[50] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather
service: a distributed resource performance forecasting service
for metacomputing. Future Generation Computer Systems, 15(5–
6):757–768, 1999.

[51] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather
service: a distributed resource performance forecasting service
for metacomputing. Future Generation Computer Systems, 15(5–
6):757–768, October 1999.

BIBLIOGRAPHY 49

[52] Tsozen Yeh, Darrell D. E. Long, and Scott A. Brandt. Increas-
ing predictive accuracy by prefetching multiple program and user
specific files. In HPCS, pages 12–19. IEEE Computer Society,
2002.

50 BIBLIOGRAPHY

Chapter 2

Towards Computing
Resources Abstraction:
Using Virtualization

Íñigo Goiri and Jordi Guitart

Abstract

Computing in these days is becoming more and more powerful and this
can imply a resource underusage. Sharing these remaining resources
between different virtual environments is an elegant solution. It can
be achieved using virtualization.

Virtualization allows resource abstraction and an isolated environ-
ment for different purposes. This chapter presents virtualization alter-
natives and how to get this with different techniques. These techniques
will be discussed according to its functionality in real environments
and innovations in this research area.

Furthermore, managing resources between virtual environments in
a smart way is not an easy issue. To serve this purpose monitoring
domain behavior is crucial in order to achieve this smart resource
sharing.

51

52 CHAPTER 2. VIRTUALIZATION

2.1 Introduction

There are many virtualization alternatives but they have a common
issue: hiding technical system details. It creates an interface that
hides implementation issues through encapsulation. In addition, it
had introduced access multiplexing to a single machine opening new
ways in research.

This chapter will make an overview about virtualization technolo-
gies and will describe which techniques exists and how these are imple-
mented in real solutions. It will also do a complete review about one of
these implementations, Xen, one of the most significant virtualization
technologies in these days.

It will also have a look at how this technologies are being used on
real environments and which virtualization alternatives and why are
being utilized describing its advantages respect typical alternatives.

2.1.1 History

Virtualization is an old issue, it was used since 1960s as software ab-
straction layer that partitions a hardware platform into virtual ma-
chines that simulate the underlying physical machine that allows run-
ning unmodified software. This mechanism provide a way to multiplex
application usage to users sharing processor time.

Providers started the development of hardware that supports vir-
tualized hardware interfaces through the Virtual Machine Monitor,
or VMM. In the early days of computing, the operating system was
called the supervisor. With the ability to run operating systems on
other operating systems, the term hypervisor resulted in the 1970s.

At that time, it was used in industry and in academic research,
nevertheless, in the 80s, modern multitasking operating systems and
hardware price allowed users run their applications in a single machine.
It seemed to be the end of virtualization and hardware providers no
longer support virtualization in their architectures. It became a his-
torical curiosity.

However, in the 1990s Stanford University researchers found that
they disposed many architectures running different operating systems
made difficult to develop and port applications. Introducing a layer
that makes different hardware look similar, Virtualization was the so-

2.2. VIRTUALIZATION TYPES 53

lution. Furthermore, it brings new solutions like process isolation,
security, mobility and efficient resource management.

In the present days, it is a real alternative and is widely extended,
for instance hardware providers are taking up again virtualization sup-
port in its hardware.

2.1.2 Why is virtualization important?

There are many reasons for using virtualization such as implying sav-
ing in power, space, cooling or administration. For example, server
consolidation, that means putting a number of under-utilized systems
on a single server.

Another area where virtualization can mean a higher quality level
is development. It can be very useful for developers having at their
disposal a safe and reliable system that can be easily managed.

Virtualization is also opening new ways in research projects thanks
to its resource managing capabilities that allows well known problems
being easily solved.

These technologies are becoming more and more popular in these
days in real environments. Some of these will be discussed in the
section 2.4.

2.2 Virtualization types

There is not just one way to achieve a virtualized environment. In
fact, there are several ways to achieve this with different levels of
abstraction obtaining different characteristics and advantages.

Computer systems introduces a division into levels of abstraction
separated by well-defined interfaces. Levels of abstraction allow imple-
mentation details at lower levels of a design to be ignored or simplified,
thereby simplifying the design of components at higher levels.

The levels of abstraction are arranged in a hierarchy, with lower
levels implemented in hardware and higher levels in software. Figure
2.1 shows how a typical system is separated in different layers that
introduces a different abstraction degree according to the layer level.

Virtualization introduces an abstraction layer to show higher layers
a different overlayed system. Virtualization can be classified according

54 CHAPTER 2. VIRTUALIZATION

Hardware

Applications
System Libraries

Operating System

Figure 2.1: Computer systems abstraction layers

with the system layer interface that it abstracts, although, some virtu-
alization techniques such as paravirtualization or partial virtualization
combine some of these with performance purposes.

Taking into account some virtualization reviews like [1] that in-
troduces some virtualization techniques, the majors types are: hard-
ware emulation, full virtualization, partial virtualization, paravirtu-
alization, operating system-level virtualization, library virtualization
and application virtualization.

All these types and some particular implementations will be de-
scribed in the next subsections.

2.2.1 Hardware Emulation

In this virtualization method, VM simulates a complete hardware al-
lowing an unmodified OS to be run. Every instruction is simulated
on the underlying hardware and this means a high performance lost
(can achieve a 100 times slowdown). The VMM which has to trans-
late guest platform instructions to instructions of the host platform is
called emulator.

Emulator tries to execute emulated virtual machine instructions
by translating them to a set of native instructions and then execute
them on the available hardware. This set of instructions has to contain
typical, I/O, ROM reading, rebooting, etc to allow a successful real
computer emulation.

On the one hand, this method allows running an operating system
without any modification. This method have an ease of implementa-
tion and this means a facility to port this to different guest platforms.

2.2. VIRTUALIZATION TYPES 55

Hardware

Apps

Guest OS Guest OS

Hardware VM A

Guest OS Guest OS

Hardware VM A

Apps Apps Apps

Figure 2.2: Emulation

In addition, you can even run multiple virtual machines, each simu-
lating a different processor.

On the other hand, since every instruction needs to be interpreted
in software, the performance penalty involved is significant. This lost
of performance can easily mean a 100 times slowdown and it could be
a 1000 times slower in a high-fidelity emulation that can include cycle
accuracy, CPU pipeline, caching behavior, etc.

Many techniques are used to implement emulation. Some of the
most famous examples of emulation are Bochs and QEMU.

Bochs

Bochs [2] is an emulator available in many platforms such as x86,
PowerPC, Alpha, SPARC and MIPS that emulates an x86 architecture
and is currently released unde LGPL license.

This emulator mostly written in C++ simulates the whole com-
puter including peripherals, memory, display. . . and not just the pro-
cessor. In addition, it can be configured in many modes like older Intel
386 or the newest 64-bit alternatives and can simulate new instructions
like MMX processors.

Bochs runs on Linux systems, therefore, any operating system that
supports x86 architecture can be run on Linux. Nowadays, this is
mostly used for operating system development and it is also used to
run older software.

56 CHAPTER 2. VIRTUALIZATION

QEMU

QEMU [3] is an open source software that can be used as a fast proces-
sor emulator that utilizes dynamic translation or as a full virtualizer
by executing guest code directly on the host CPU.

Taking into account this duality, it has some differences with other
emulators like Bochs. It supports two operation modes, the first one
is full system emulation mode which emulates a full system with pro-
cessor and peripherals. This mode emulates architectures like x86,
x86 64, ARM, SPARC, PowerPC and MIPS with reasonable speed
using dynamic translation.

The second mode called user mode emulation, which can only be
hosted on Linux with a host driver called, KQEMU, that allows ex-
ecuting binaries for different architectures to be executed on Linux
running on x86. Among the supported architectures in this mode, we
can find ARM, SPARC, and PowerPC.

A full virtualizer called VirtualBox [4] was created taking profit of
QEMU full virtualized mode. It uses a built-in dynamic recompiler
based on QEMU. It runs nearly all guest code natively on the host
and uses the recompiler only for special situations.

In conclusion, QEMU can be considered as an emulator with full
virtualizion capabilities at the same time.

2.2.2 Full virtualization

This method, also known as native virtualization, uses a virtual ma-
chine that mediates between guest operating system and the native
hardware. Is faster than emulation but slower than underlyed hard-
ware because of the hypervisor mediation.

In this case, host operating system doesn’t need to be modified.
Virtual machine simulates enough hardware to allow an unmodified
operating system. Certain machine instructions must be trapped and
handled within the hypervisor because the underlying hardware is not
owned by an operating system but is instead shared by it through the
hypervisor.

One of the biggest advantages of full virtualization is that guest
OS can run unmodified. Nevertheless, it must support the underlying
hardware.

2.2. VIRTUALIZATION TYPES 57

Hardware

Apps

Guest OS Guest OS Guest OS Management

Apps Apps

Hypervisor (VMM)

Figure 2.3: Full virtualization

There are multiple alternatives in this technique like VirtualBox.
VMWare, Parallels Desktop and z/VM.

VMWare

VMWare [5] is a commercial full virtualization alternative that im-
plements a hypervisor sat between the guest operating system and
the bare hardware as a new layer. This layer abstracts any operating
system from the real hardware and allows this OS running without
knowledge of any other guest on the system.

VMWare also virtualizes the available I/O hardware and places
critical drivers into the hypervisor increasing performance.

The virtualized environment is seen as a file that can be easily and
quickly migrated to a new host.

z/VM

z/VM [6] new IBM product has a long heritage from 1960s VM de-
veloping. Its core is the Control Program (figure 2.4) which is the
operating system hypervisor for the system z that provides virtualiza-
tion of physical resources and allows multiple processors and resources
to be virtualized to different guest operating system, like Linux or
z/OS.

This is designed to allow the capability for clients to run hundreds
to thousands of Linux server on a single mainframe running with other
System z operating system, such as z/OS as a large-scale Linux-only
enterprise server solution.

58 CHAPTER 2. VIRTUALIZATION

Hardware

Apps

Linux z/OS
Conversational

Monitor
System

Linux

Apps Apps Apps

Control Program

Figure 2.4: z/VM

2.2.3 Partial virtualization

This kind of virtualization only simulates some parts of an underlying
hardware environment. A specific case of this method is address space
virtualization.

Environment supports resource sharing and process isolation but
does not allows separate guest operating system instances

Although not generally viewed as a virtual machine category per
se, this was an important approach historically, and was used in such
systems as CTSS, the experimental IBM M44/44X, and arguably such
systems as OS/VS1, OS/VS2, and MVS.

2.2.4 Paravirtualization

This technique has some similarities to full virtualization. It uses a
hypervisor for shared access to the underlying hardware but integrates
some virtualization parts into the operating system. This approach
implies that the guest system needs to be modified for the hypervisor.

This technology born with the need of increase full virtualization
performance. It explores ways to provide high performance virtual-
ization of x86 by implementing a virtual machine that differs from
the raw hardware. Guest operating systems are ported to run on the
resulting virtual machine.

To implement this method, hypervisor offers an API to be used
by the guess OS. This call is called “hypercall”. This issue increase
performance respect full virtualization.

On the one hand, guest OS needs to be modified and this can mean

2.2. VIRTUALIZATION TYPES 59

Hardware

Apps

Guest OS Guest OS Guest OS Management

Apps Apps

Guest OS Mod Guest OS Mod Guest OS Mod

Hypervisor (VMM)

Figure 2.5: Paravirtualization

a disadvantage. On the other hands, this approach offers performance
near to the unvirtualized system. In addition, it can run multiple
different operating systems concurrently.

Some of the most famous examples of paravirtualization are Xen
and Parallels Workstation.

Xen

Xen [7] is a free open source hypervisor that allows a high usage degree
and consolidation of servers created by XenSource. It provides mech-
anisms to manage resources, including CPU, memory and I/O. This
is the quickest and safer virtualization infrastructure in this moment.
Nevertheless, paravirtualization requires introducing some changes in
the virtualized operating system but resulting in near native perfor-
mance.

Many distributors such as Intel, AMD, Dell, Hewlett-Packard, IBM,
Novell, Red Hat or Sun Microsystems use this software. In addition,
it has a GPL license and can be download freely.

In a Xen environment a virtual server is just an operating system
instance (called domain in the Xen environment) and its load is being
executed on top of the Xen hypervisor. This instances accesses devices
through the hypervisor, which shares resources with other virtualized
OS and applications.

Xen was created in the 2003 by the computation laboratory of
the University of Cambridge known as the Xen Hypervisor project,
leadered by Ian Pratt. In the next years, the present Xen company
was created, XenSource.

60 CHAPTER 2. VIRTUALIZATION

The key of Xen success is paravirtualization that allows obtaining
a high performance level. Xen gives to the guest operating system an
idealized hardware layer. Intel has introduced some extensions in Xen
to support the newest VT-X Vanderpool architecture. This technology
allows running operating systems without any modification to support
paravirtualization.

Hardware

Dom0

Linux Drivers
Kernel0

Linux
KernelU

Linux
KernelU

DomU DomU

Xen Hypervisor

Figure 2.6: Xen

When the base system supports Intel VT or AMD Pacifica, operat-
ing systems without any modification like Windows can be ran. With
this new architecture and paravirtualization allows this OS without
modifications achieve virtualized Linux performance levels.

Overhead introduced by Xen hypervisor is less than 3.5%. In addi-
tion, thanks to paravirtualization I/O operations are executed out of
the hypervisor and shared between domains following resource sharing
policies. Nevertheless, virtualized domains are fully isolated.

Xen also offers some tools like live migration, CPU scheduling and
memory management combined with open source software advantages
makes Xen a great alternative that allow administrator having a full
resources control.

User-mode Linux

User-mode Linux (UML) [8] allows a Linux operating system to run
other Linux operating systems in user-space. Each guest Linux oper-
ating system is a process. This allows multiple Linux kernels (with
their own associated user-spaces).

As of the 2.6 Linux kernel, UML resides in the main kernel tree,
but it must be enabled and then recompiled. These changes provide,

2.2. VIRTUALIZATION TYPES 61

Hardware

Apps

Linux
Guest

Apps Apps

Linux
Guest

Linux
Guest

Linux
Guest

Apps

Linux with UML

Figure 2.7: User-mode Linux

among other things, device virtualization that allows the guest operat-
ing systems to share the available physical devices, such as the block
devices (floppy, CD-ROM, and file systems, for example), consoles,
NIC devices, sound hardware, and others.

To run kernel in application space, they must be specially compiled
for this use. UML can be nested and a guest kernel can run another
guest kernel.

2.2.5 Operating system-level virtualization

This method uses a different technique to virtualize servers on top of
the operating system itself. It supports a single operating system and
simply isolates the independent servers from one another. The guest
OS environments share the same OS as the host system and applica-
tions running in this environment view it as a stand-alone system.

Hardware

Apps

Guest OS Guest OS Guest OS Management

Apps Apps

Guest OS Mod Guest OS Mod Guest OS Mod

Hypervisor (VMM)

Figure 2.8: Operating System Virtualization

This method requires changes to the operating system kernel but

62 CHAPTER 2. VIRTUALIZATION

this implies a huge advantage, native performance. It enables multi-
ple isolated and secure virtualized servers to run on a single physical
server. Each one has its own superuser, set of users/groups, IP address,
processes, files, applications, system libraries, configuration files, etc.

Whereas VMs attempt to virtualize ”a complete set of hardware”
a virtual OS represent a ”lighter” abstraction, virtualizing instead ”an
operating system instance”. All guests run at top of a single operating
system kernel. Its mechanism multiplexes this one OS kernel to look
like multiple OS (and server) instances, especially from the perspective
of running applications, users, and network services.

Because they virtualize less, it imposes lower overhead than VMs.
As a result, more virtual servers can be supported on a given server.
Proponents occasionally claim ”thousands of VPS per server” in test
situations to determine the upper limits of the technology.

OpenVZ

OpenVZ [9] is an operating system-level virtualization solution that
supports isolated user-spaces and virtual private server (VPS) built
on Linux and available under the GNU General Public License.

It creates isolated and secure virtual environments on a single phys-
ical server enabling better server utilization and ensuring that appli-
cation do not conflict. Each virtual machine can be considered as an
independent machine with its own root access, users, IP addresses,
memory, processes, files, applications, system libraries and configura-
tion files. In addition, OpenVZ provides a set of management tools to
easily create, list or destroy virtual environments.

OpenVZ includes a two-level CPU scheduler that first choose which
virtual server has to take CPU control and then gives it to a process
of this machine. In addition, it defines resource sharing between VPSs
and supports migration of a VPS to a new server.

Virtuozzo

Virtuozzo [10] is a proprietary operating system virtualization product
produced by SWsoft, Inc. A version that supports Linux has been
available since 2001 and a version that supports Microsoft Windows
became available in 2005.

2.2. VIRTUALIZATION TYPES 63

It separate system in virtual environments that behaves in most
respects as if it were a stand-alone server. Virtuozzo can support
tens to hundreds of VEs on a single server due to its use of operating
system-level virtualization. It is available for Linux and Microsoft
Windows.

Virtuozzo is based on OpenVZ (SWsoft also supports it), and its
concepts are similar to several other operating system-level virtual-
ization implementations, including Solaris Containers, Linux-VServer
and FreeBSD Jail.

Virtuozzo supports servers with up to 64 x86 CPUs and 64 GB of
RAM, but 1-4 CPU systems are far more common in practice.

2.2.6 Library virtualization

In almost all of the systems, applications are programmed using a
set of APIs exported by a group of user-level library implementations.
Such libraries are designed to hide the operating system related details
to keep it simpler for normal programmers. However, this gives a new
opportunity to the virtualization community.

Hardware (x86)

Application A

Windows

System Libraries

Hardware (PowerPC)

Application A

Linux

Wine

Figure 2.9: Library Virtualization

This type of virtualization is not mostly considered as a technique
but it also introduces an abstraction layer (figure 2.9) between appli-
cations and underlying system. The most famous library virtualizer is
Wine.

Wine

Wine [11] is an open source reimplementation of the win32 API for
UNIX-like systems and it can be viewed as layer that allows compat-
ibility for running Windows programs without any modification, for

64 CHAPTER 2. VIRTUALIZATION

example, it allows running windows native application to be run in
Linux.

Rather than acting as a full emulator, Wine implements a compat-
ibility layer, providing alternative implementations of the DLLs that
Windows programs call, and processes to substitute for the Windows
kernel.

It was primarily written for Linux, but the Mac OS X, FreeBSD
and Solaris ports are currently well-maintained and thanks to this
application, major part of standard Windows software doesn’t need
any modification to be executed in these operating systems.

2.2.7 Application Virtualization

This approach runs applications in a small virtual environment that
contains components needed to execute a program such as registry en-
tries, files, environment variables, user interface elements and global
objects. This virtual environment acts as a layer between the applica-
tion and the operating system (figure 2.10), and eliminates application
conflicts and application-OS conflicts.

Hardware

Java App A

Mac OS

Java App B

JVM

Hardware

Java App B

Windows

Java App A

JVM

Hardware

Java App B

Linux

Java App A

JVM

Figure 2.10: Application Virtualization

The most popular application virtualization implementation is the
Java Virtual Machine provided by Sun.

JVM

Java Virtual Machine [12] is the most famous and extended application
virtualization alternative. This is a software layer that introduces
a virtual environment that can execute java bytecodes. It abstracts

2.2. VIRTUALIZATION TYPES 65

Project Type Creator
Bochs Emulation Kevin Lawton
QEMU Emulation/Full virtualization Fabrice Bellard
VMWare Full Virtualization VMWare
z/VM Full Virtualization IBM
Xen Paravirtualization University of Cambridge
UML Paravirtualization Jeff Dike
OpenVZ OS Virtualization Community
Virtuozzo OS Virtualization SWsoft
JVM Application Virtualization Sun
Wine Library Virtualization Bob Amstadt

Table 2.1: Virtualization types

application from the underlying system, the same code can be executed
in a x86 or in a PowerPC architecture.

Because it is available for many hardware and software platforms,
Java can be both middleware and a platform in its own right

Software executed on top of the JVM must be compiled into a stan-
dardized portable binary format and then can be executed emulating
the JVM instruction set by interpreting it, or using a just-in-time com-
piler (JIT) such as Sun’s HotSpot. JIT compiling, not interpreting, is
used in most JVMs today to achieve greater speed.

JVM introduces some mechanisms like garbage collecting, CPU
management and an interface to access to the overlayed system with-
out taking into account its unique characteristics.

2.2.8 Summary

Many techniques and some implementations of these have been de-
scribed. These implementations can be summarized in the table 2.2.8.

All these methods are not isolated and can be easily combined if
it was desired, for example figure 2.11 an extreme virtualized system
is presented. This is a x86 computer that supports VT-X running a
Linux that runs a Bochs and a Xen. This Bochs executes a Mac OS
X running a VMWare that runs a Linux with OpenVZ. This OpenVZ

66 CHAPTER 2. VIRTUALIZATION

runs multiple Linux.

x86 with VT-X

Java Application

Bochs
Mac OS X

Linux
Wine

JVM for Windows

Xen
Linux

Windows
VMWare

Linux
OpenVZ

QEMU

Linux Linux

Figure 2.11: Virtualization has no limits

Executed Xen run a Windows thanks to VT-x, this Windows exe-
cutes a QEMU for Windows that executes a Linux. This Linux exe-
cute a Java Virtual Machine for Windows that run a Java application
thanks to Wine.

In conclusion, all these virtualization techniques can be mixed as we
want with no limits, obviusly having six operating systems running on
the same system implies high performance lost. Finally, virtualization
is a very flexible technology.

2.3 Implementation issues

Virtual machines execute software in the same manner as the machine
for which the software was developed. The virtual machine is imple-
mented as a combination of a real machine and virtualizing software
and implementations issues depends on the virtualization technique,
nevertheless, the main part of them follow the same philosophy more
or less.

Typically virtualization is done by a layer that manages guest pe-
titions (processor demand, memory or input/output) and translate
them into the underlying hardware (or to the underlying operating
system in some cases) making them executable.

A typical implementation decision in emulation and full virtual-
ized environment is separating executed code between privileged and
non-privileged for performance reasons. This decision is based on the

2.3. IMPLEMENTATION ISSUES 67

principle that code is executed in different ring levels and virtual ma-
chines are tipically in the non-privileged layer and it demand an special
control for the privileged instructions.

In the next subsections, some issues of virtualizing different com-
ponents such as processor, memory and I/O will be discussed.

2.3.1 Processor

Emulating instructions interpreted by the underlying processor is the
key feature of different virtualization implementations. The main task
of the emulator is convert instructions and it could be done by in-
terpretation or binary translation for instance. Then it executes this
code in the underlying machine.

Nevertheless, current architectures like IA-32 is not efficiently vir-
tualizable because it doesn’t distinguish between privileged and non-
privileged instructions. Some improvements in newest processors to
avoid this problem will be discussed in next sections.

Because this limitation, current virtualization engines must iden-
tify each instruction and treat it to execute them in the right privileged
level.

In addition to instruction interpretation a virtualization technique
must deal with scheduling. Meanwhile, a typical operating system
uses a scheduling algorithm that determines which processes will be
executed in which processor and how long, in a virtualized environ-
ment, virtualization layer must take this decisions following different
policies.

2.3.2 Memory

Operating system assigns memory pages among processes with a page
table that assigns real memory among processes running on the sys-
tem. And virtual machine monitors uses this host operating capabili-
ties to map memory to each process.

To implement memory sharing between virtual machines there are
several ways. but every method maps guest application memory into
the host application address space, including the whole virtual machine
memory. This mapping is managed by a process (hypervisor in Xen for
instance) which. This mapping can be done in a more software way or

68 CHAPTER 2. VIRTUALIZATION

relying this decisions to the hardware depending on the virtualization
method.

Paging requests are converted into disk read/writes by the guest
OS (as they would be on a real machine) and they are translated
and executed by the virtualization layer. Then requests are actually
made by a single process every time. With this technique, standard
memory management and replacement policies still the same than in
a non-virtualized machine.

2.3.3 Input/Output

Operating system provides an interface to access I/O devices. This
accesses can be seen as a service that is invoked as a system call which
transfers control to the operating system. It uses an interface to a
set of software routines that converts generic hardware requests into
specific commands to hardware devices and this is done through device
driver calls.

Implementing Input and Output typically only store the I/O op-
eration and pass it to the overlying system and then return it to the
application converting petitions to system specific formats.

2.3.4 Recent hardware support

In the beginning, x86 architecture does not support virtualization and
it makes difficult to implement a virtualized environment on this ar-
chitecture.

Virtualization software need to employ sophisticated mechanisms
to trap and virtualize some instructions. For example, some instruc-
tions do not trap and can return different results according to the
level of privilege mode. In addition, these mechanisms introduce some
overhead.

In the year 1974 Popek and Goldberg [13] defined a set of conditions
to define if an architecture supports virtualization efficiently.

Main chip vendors, Intel and AMD, have introduced extensions to
resolve these difficulties. They have independently developed virtual-
ization extensions to the x86 architecture that are not directly com-
patible with each other but serve largely the same functions. These

2.4. VIRTUALIZATION IN THE REAL WORLD 69

extensions will allow a hypervisor to run an unmodified guest operat-
ing system without introducing emulation performance penalties.

This improvements are based on the inclusion of an special mode,
VMX, that supports privileged and non-privileged operations and then
any instruction can be easily executed without taking into account if it
s privileged or not. In addition, this improvement does not introduce
an overhead respect a traditional architecture.

Intel is producing new virtualization technology know as IVT (short
for Intel Virtualization Technology) that supports hypervisors for both
the x86 (VT-x) and Itanium (VT-i) architectures. The VT-x supports
two new forms of operation, one for the VMM (root) and one for guest
operating systems (non-root). The root form is fully privileged, while
the non-root form is unprivileged (even for ring 0). The architecture
also supports flexibility in defining the instructions that cause a VM
(guest operating system) to exit to the VMM and store off processor
state. Other capabilities have been added; see the Resources section.

AMD is also producing hardware-assisted virtualization technol-
ogy, AMD Virtualization, abbreviated AMD-V (code named Pacifica).
Among other things, Pacifica maintains a control block for guest oper-
ating systems that are saved on execution of special instructions. The
VMRUN instruction allows a virtual machine (and its associated guest
operating system) to run until the VMM regains control (which is also
configurable). The configurability allows the VMM to customize the
privileges for each of the guests. Pacifica also amends address trans-
lation with host and guest memory management unit (MMU) tables.

These new technologies can be used by a number of virtualization
techniques discussed here, including Xen, VMware, User-mode Linux,
and others.

2.4 Virtualization in the real world

All these technologies can achieve different objectives and introduce
improvements in different scenarios

One of the most important areas where virtualization can intro-
duce big improvements is hosting. In this scenario, servers can be
underutilized and different machines can be consolidated in a phisyc
one. Some technologies like operating system virtualization and par-

70 CHAPTER 2. VIRTUALIZATION

avirtualization can achieve desired performance levels in a complete
isolated environment. With this solution, fewer machines are needed
to attend the same workload with a hardware saving (including costs
and space). In addition, it reduces management and administration
requirements thanks to migration and replication capabilities of this
methods.

Thanks to some virtualization techniques isolation capabilities, vir-
tualization is a great solution for sandboxing purposes. Virtual ma-
chines provide a secure and isolated environment (sandboxes) for run-
ning foreign or less-trusted applications. Virtualization methods that
achieve a robust environment for the underlying machine are full virtu-
alization and paravirtualization. Therefore, virtualization technology
can help building a secure computing platform.

Multiple environments in a single computer is another virtualiza-
tion feature. Many of the virtualization types support multiple virtual
machines, nevertheless, just some of them achieve a performance level
enough for being really usable in real environments, full virtualization
and paravirtualization. In addition, virtualization resource managing
capabilities also allow resource sharing in a managed way, taking into
account virtual machine requirements and giving QoS capabilities to
the system.

Last virtualization usage also allows multiple simultaneous oper-
ating systems and it allows running specific operating system appli-
cations without being necessary to reboot to other operating system.
This feature open system dependent applications to every operating
system and every architecture.

Thanks to virtualization, architectures or hardware that has never
been implemented can be tested. Full virtualization and emulators
can achieves this objective, providing new instructions or new features
with developing purposes. It also allows a complete profiling that
can introduce a considerable overhead, however, developing benefits
are much more bigger than difficulties. In addition to architecture
virtualization, non existing hardware can be used, for instance, Virtual
SCSI drives, Virtual Ethernet adapters, virtual Ethernet switches and
hubs, and so on.

Software developing takes great benefits of virtualization and one
of the biggest is debugging. Having a complete profiled system permit
a complete software debugging. In addition, it can help to debug

2.4. VIRTUALIZATION IN THE REAL WORLD 71

complicated software such as an operating system or a device driver
by letting the user execute them on an emulated PC with full software
controls.

Another improvement can be obtained with virtualization, migra-
tion. A application (or the complete operating system) can be mi-
grated to another machine. This feature is one of the features of ap-
plication virtualization, full virtualization, paravirtualization and li-
brary virtualization. With this techniques an application can be move
to a different hardware without any modification. In addition, some
of these methods allows live migration, in other word, moving an ap-
plication to an other place while it is being executed.

This characteristic can be moved to a higher level, converting a
whole system in a package that can be easily deployed and configured
in other machines providing complete software packages.

Combining last virtualization capabilities, a complete test scenario
can be easily produced. Having a great amount of machines can be
impossible to obtain. Nevertheless, having complete packages that can
be deployed as a whole system in a single machine, reduces hardware
and deploying time.

Different real usages alternatives will be discussed in the next sub-
sections.

2.4.1 Virtual servers

Xen is a widely extended virtualization alternative for increasing server
usage and optimizing global costs and is used by application services
providers and hosting companies because it provides a precise resource
manager.

Hosted applications rarely makes use of all machine resources.
Combining some of them with a complementary server load increases
and allocate them in the same computer would increase server utiliza-
tion and reduce hardware costs. Nevertheless, putting distinct type
applications in the same environment without any control would in-
terfere other applications, therefore, is needed to control and isolate
them with a mechanism like virtualization.

Introducing this solution, number of used machines is reduced and
then cost decrease, nevertheless, it also reduces management costs.
Migrating and replicating virtual machines is easier than installing a

72 CHAPTER 2. VIRTUALIZATION

complete operating system or check why is it failing. So it reduces
time and personal to manage systems with minimum knowledge.

In the last years, virtualization could be considered as a not too
efficient solution but in these days alternatives like OpenVZ or Xen
has a minimum overhead with a great performance that makes them
a real choice.

Nowadays, some hosting enterprises offers virtualized servers known
as VPS. Some examples are Spry and its division VPSlink that offers
virtual private servers with OpenVZ, linode.com with Xen or Axarnet
that uses Virtuozzo.

An important measure of web hosting quality is uptime and using
virtualization and its migration characteristics provides a 100% server
uptime, an impossible issue with traditional hosting. This is another
great virtualized servers advantages.

2.4.2 Research projects

Virtualization management and the facility to change policies accord-
ing to its needs is a great alternative for research purpose.

Virtualization open new ways in computing and one of these is
resource managing. There are many research projects like Tycoon [?]
that manages compute resources in distributed clusters like PlanetLab,
the Grid, or a Data Center. This system is based on credits and users
pay for resources and they can provide resources to earn credits.

It allocates resources according to automated economic mecha-
nisms with more efficiency than manual allocation and it uses Linux
and Xen as a prototype.

Another project that take profit of virtualization resource manag-
ing is an adaptive control in data centers [14] that dynamically adjusts
the resource shares to individual tiers in order to meet application-level
QoS goals while achieving high resource utilization in data centers.

Porting resource managing to a higher level, virtualization also
allows creating and destroying new machines, duplication, migration in
an easy way. This set of facilities can be used in autonomic computing
allowing self-managing and reducing administration time.

Exists an IBM project [15] that takes advantage of IBM Virtual-
ization Engine to give autonomic features to their system. With these

2.4. VIRTUALIZATION IN THE REAL WORLD 73

capabilities they achieve a high level of efficiency in system adminis-
tration. This system manages servers, storage, system and network.
This is a great solution to optimize any infrastructure management.

Another project that gives autonomic features to their solution is
a system that implements a virtualized server with autonomic man-
agement of heterogeneous workload [16] that uses Xen management
capabilities. This system innovation and the key feature is that allows
virtual machine migration to achieve job machine requirements and
shares resources according with specified policies taking into account
each virtual machine load.

In conclusion, all these projects take advantage of virtualization to
resolve well known problems and giving new solutions for this purpose.

2.4.3 Development

In the IT development, virtualization can make easier development
tasks and it can be used in many areas such as software development
or security issues. Working in this type of environment introduces
some improvements respect traditional environments.

This computing area has been highly benefited by virtualization.
This was an area that implied many time for deploying, managing and
other tasks that were not strictly needed for developing, thanks to
virtualization these undesired tasks have been mostly removed saving
many time and it has made development easier.

Software development

Virtualized environments are used in development and software testing
because of it allows developers use multiple virtual machines and check
it introducing a basic issue: hardware cost reduction. In addition,
tested hardware can be easily adapted to change system characteristics
according with developer needs.

Another advantage is porting software from the test environment
to a production one migrating this machine. This deployment time
has been eliminated and applications start running instantly.

Virtualization is also used as a sandbox for critic application de-
velopment. Developing a kernel or a module can crash the machine
many times and introducing a minimal layer that isolates real system

74 CHAPTER 2. VIRTUALIZATION

from the working one to develop applications would make this task
easier. Therefore, developer can work without being afraid of crashing
the whole system and reducing time to reboot the whole system.

For instance, the Linux kernel occupies a single address space,
which means that a failure of the kernel or any driver results in the
entire operating system crashing. Applying virtualization if one oper-
ating system crashes due to a bug, the hypervisor and other operating
systems continue to run. This can make debugging the kernel similar
to debugging user-space applications.

Mobility scenarios

Taking into account virtualization implementation issues, it allows tak-
ing the whole virtual machine state. This allow migrating a virtual
machine to another machine including its state. This feature enable
developing new applications that supports execution for a large pe-
riod, when the overlaying machine needs to be maintained it can be
moved to another machine.

Furthermore, a virtual machine can be stored periodically to avoid
systems failures due to power problems or hardware fails and restored
immediately, obtaining a high availability degree.

Virtualization can also be seen as a middleware that abstracts un-
derlying system and therefore implementing software in a virtual ma-
chine can be ported to any architecture that supports that virtualiza-
tion layer without any modification.

Security

Thanks to virtualization, a system can be considered as a safe en-
vironment and protect the overlayed system and the rest of virtual
machines from possible attacks or failures.

In security developing projects, virtualization has also great ad-
vantages. For instance, in virus profiling, this job can be done in a
virtual environment without any risk and allowing a complete system
profiling thanks to VM characteristics.

In a local area network a honeypot implemented on a virtual ma-
chine representing a system with some typical bugs or security weak-
nesses for attracting hackers that try to attack the network and dis-

2.5. CONCLUSIONS 75

tract them from the really important systems of the network. In addi-
tion, this honeypot can be highly monitored to make an early detection
of possible intrusions.

From the local network security view, virtual machines can be a
way to easily restore infected systems. Thanks to virtualization man-
agement capabilities, a minimal system installation or system backups
can be stored in a server to restore them later if it was necessary.

Having multiple users in a single machine implies a risk, isolat-
ing each user in a restricted virtual machine reduce these risks to
the minimum expression. Using a virtualization method some restric-
tions like preventing some instructions executions, restricting traffic
network. . . can be specified, giving a high security level.

Finally, virtualization is a great tool for security issues that gives
many facilities to security experts.

2.5 Conclusions

Virtualization is an old technology that was forgotten and nowadays
is becoming one of the most used computing trends because its capa-
bilities.

In this chapter, virtualization types and how they are implemented
in real products have been explained. So many products have been
presented with their own features. Deciding which alternative should
be used in each environment according with its features is a key issue.

Taking into account open new ways, we can conclude that virtual-
ization is a great solution.

76 CHAPTER 2. VIRTUALIZATION

Bibliography

[1] M. Tim Jones. Virtual linux. 2006. http://www-128.ibm.com/

developerworks/library/l-linuxvirt/index.html.

[2] Bochs. http://bochs.sourceforge.net.

[3] Qemu. http://fabrice.bellard.free.fr/qemu.

[4] Virtualbox. http://www.virtualbox.org.

[5] Vmware. http://www.vmware.com.

[6] z/vm. http://www.vm.ibm.com.

[7] Xen. http://www.xensource.com.

[8] User-mode linux. http://user-mode-linux.sourceforge.net.

[9] Openvz. http://openvz.org.

[10] Virtuozzo. http://www.swsoft.com/en/virtuozzo.

[11] Wine. http://www.winehq.org.

[12] Jvm. http://java.sun.com.

[13] Formal requirements for virtualizable third generation architec-
tures. 1974. http://www.cs.auc.dk/~kleist/Courses/nds-e05/

papers/vmformal.pdf.

77

http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html
http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html
http://bochs.sourceforge.net
http://fabrice.bellard.free.fr/qemu
http://www.virtualbox.org
http://www.vmware.com
http://www.vm.ibm.com
http://www.xensource.com
http://user-mode-linux.sourceforge.net
http://openvz.org
http://www.swsoft.com/en/virtuozzo
http://www.winehq.org
http://java.sun.com
http://www.cs.auc.dk/~kleist/Courses/nds-e05/papers/vmformal.pdf
http://www.cs.auc.dk/~kleist/Courses/nds-e05/papers/vmformal.pdf

78 BIBLIOGRAPHY

[14] Xiaoyun Zhu Mustafa Uysal Zhikui Wang Sharad Singhal Arif
Merchant Kenneth Salem Pradeep Padala, Kang G. Shin.
Adaptive control of virtualized resources in utility computing
environments. http://www.eecs.umich.edu/~ppadala/research/

dyncontrol/eurosys07.pdf.

[15] Lori Simcox. Autonomic features of the ibm virtualization
engine. 2004. http://www-128.ibm.com/developerworks/linux/

library/ac-ve/.

[16] Ian Whalley David Carrera Ilona Gaweda Malgorzata, Steinder
and David Chess. Server virtualization in autonomic management
of heterogeneous workloads.

[17] An introduction to virtualization. http://www.kernelthread.com/

publications/virtualization/.

[18] Server virtualization: let battle commence. 2006.
http://www.cbronline.com/article_feature.asp?guid=

609D18C1-C9F9-42A5-9BE3-B5B3B781C91B.

[19] Eric Van Hensbergen. The effect of virtualization on os interfer-
ence. http://research.ihost.lv/osihpa-hensbergen.pdf.

[20] Bryan Clark. A moment of xen: Virtualize linux to test your apps.
2005. http://www-128.ibm.com/developerworks/library/l-xen/.

[21] Rami Rosen. Introduction to the xen virtual machine. 2005.
http://www.linuxjournal.com/article/8540.

[22] Tzi-cker Chiueh Susanta Nanda. A survey on virtualization tech-
nologies. http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf.

[23] Gabriel Torres. Intel virtualization technology (vt) explained.
2005. http://www.hardwaresecrets.com/printpage/263.

[24] Intel R© virtualization technology. http://developer.intel.com/

technology/virtualization/index.htm.

[25] Pradeep Padala Sharad Singhal Zhikui Wang, Xiaoyun Zhu. Ca-
pacity and performance overhead in dynamic resource alloca-
tion to virtual containers. http://www.eecs.umich.edu/~ppadala/

research/dyncontrol/im07.pdf.

http://www.eecs.umich.edu/~ppadala/research/dyncontrol/eurosys07.pdf
http://www.eecs.umich.edu/~ppadala/research/dyncontrol/eurosys07.pdf
http://www-128.ibm.com/developerworks/linux/library/ac-ve/
http://www-128.ibm.com/developerworks/linux/library/ac-ve/
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://www.cbronline.com/article_feature.asp?guid=609D18C1-C9F9-42A5-9BE3-B5B3B781C91B
http://www.cbronline.com/article_feature.asp?guid=609D18C1-C9F9-42A5-9BE3-B5B3B781C91B
http://research.ihost.lv/osihpa-hensbergen.pdf
http://www-128.ibm.com/developerworks/library/l-xen/
http://www.linuxjournal.com/article/8540
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf
http://www.hardwaresecrets.com/printpage/263
http://developer.intel.com/technology/virtualization/index.htm
http://developer.intel.com/technology/virtualization/index.htm
http://www.eecs.umich.edu/~ppadala/research/dyncontrol/im07.pdf
http://www.eecs.umich.edu/~ppadala/research/dyncontrol/im07.pdf

BIBLIOGRAPHY 79

[26] Franck Cappello Benjamin Quetier, Vincent Neri. Selecting a
virtualization system for grid/p2p large scale emulation. http:

//www.lri.fr/~quetier/papiers/EXPGRID.pdf.

[27] T. Garfinkel M. Rosenblum. Virtual machine monitors: Current
technology and future trends.

[28] James E. Smith and Ravi Nair. Virtual Machines: Versatile plat-
forms for systems and processes.

http://www.lri.fr/~quetier/papiers/EXPGRID.pdf
http://www.lri.fr/~quetier/papiers/EXPGRID.pdf

80 BIBLIOGRAPHY

Chapter 3

Self-managed policies, a
survey

Ferran Julià and Ramon Nou

Abstract

The increasing complexity, heterogeneity and scale of systems has
forced to emerge new techniques to help system managers. This has
been achieved through autonomic computing, a set of self-* techniques
(self-healing, self-managing, self-configuring,etc...) that enable sys-
tems and applications to manage themselves following a high-level
guidance. This chapter is centered in the self-management capability
of autonomic systems, it pretends to give an overview of the three most
popular mechanisms used to achieve self-management, action policies,
goal policies and utility function policies. We present a summary of
autonomic system’s architecture and an extended view of the different
policy mechanisms analysing the usefulness of each one.

81

82 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

3.1 Motivation

The motivation of this chapter is basically to give and overview of the
most current techniques used to develop the self-managed systems.
This types of systems are emerging and many different articles and
implementations have appeared in the recent years. As the complexity
of systems reclaims to reduce the charge of systems’ administrators.

We have followed the approach used by Kephard in order to classify
the different autonomous systems. We think this classification adjusts
very well to most of systems, and it remarks the utility function model
which we thing is the most emerging and may be the most effective
model.

3.2 Introduction

“Biological systems have inspired systems design in many ways:Artificial
Intelligence, Artificial Neural Networks, Genetic Algorithms, Genetic
Programming, and Holonic Systems to name a few. The most recent
is the inspiration to create self-managing systems.”, as said by R. Ster-
ritt in [15], designers have copied the idea of human body and applied
to autonomic systems, this gives systems the ability of manage them-
selves in an automatic way taking decisions to preserve its integrity
and performance.

The major difference between this to systems is that while in ner-
vous systems the decisions are involuntary in IT systems the decision
are taken from designer’s rules. Independently of where it comes,
it’s clear than the increasing complexity, scale, heterogeneity and dy-
namism implies a huge management effort, this has forced the investi-
gators and designers to create mechanisms to reduce the management
complexity of such systems. The last purpose of autonomous systems
is to avoid the administrator to directly manage the system, instead of
that they give systems’ administrators some high-level rules that will
make the system change its behavior according to this guides.

Autonomic systems are composed by autonomic elements, and this
elements interact one with each other in order to follow the high-level
polices. M.Parashar [14] divide the different parts of autonomic sys-
tem/application that can be autonomous in eight: Self-Awareness,

3.3. ARCHITECTURE 83

Self-Configuring, Self-Optimizing, Self-Healing, Self-Protecting, Con-
text Aware, Open, Anticipatory. The four first make reference to
management or decisions aspects, and the rest are design or imple-
mentation characteristics. Due to the complexity of such systems we
can consider the decision aspects as the most complex and important,
the development of all these characteristics has its own algorithms and
techniques, but all follow the same autonomic architecture described
in the following sections.

This chapter is centered in Self-managing or Self-optimizing char-
acteristic of autonomic systems, in order to understand the different
ways to archive this in the following sections we introduce some ar-
chitecture and design characteristics of autonomic systems valid for
implementing any kind of autonomic element. As we discuss later on,
the crucial part of this type of systems is the taking of decision (the
“intelligence”), is in that part of the autonomic schema where we have
centered the survey.

The chapter is divided in five main sections. After the introduction
we will make an overview of autonomic architecture and give some def-
initions to better understand the rest of the chapter, the third section
exposes the different ways to design the decision taking procedures,
what we call management policies in self-managed systems and also
we’ll give some examples of use. In fourth we expose some conclusions
and finally in five section we give some future trends.

3.3 Architecture

For the understanding of a self-* system and more in concrete the self-
managed ones it’s necessary to know how such types of applications
are usually structured. Obviously there are much many ways to de-
sign an autonomic systems but we believe the one presented here is
representative of most of them. Almost all architectures are equiva-
lent, it depends on how you define the parts or layers involved, but
the “philosophy” behind them it’s always the same.

In this chapter we’ll also give a view of two important concepts
in autonomic world, the difference between open-loop and closed-loop
systems and the typical architecture of an autonomic system. The
former is a way to classify any kind of distributed systems, and in

84 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

the second we will expose some important concepts in order to better
understanding the chapter.

The choice of open or closed loop when developing an autonomic
system would be the first one to take because this fixes the overall
architecture.

The architecture presented in this section is a closed-loop one, and
it’s independent of the type of self-* or the type of policy based system
that implements it, the ideas described here can be applied to all
autonomic closed-loop systems.

3.3.1 Open-loop vs Closed Loop

Due to its analogy, we can consider that autonomic IT systems are con-
trol systems. This systems take decisions over its behavior depending
on some input information.

The terms Closed-loop and Open-loop come from electrical engi-
neering, they are used for identify the two possible ways to design a
control system. The main difference between them is that the former
uses feedback information when taking decisions and the second only
uses a reference input.

Open-loop (also known as feed-forward control) systems are con-
trolled directly by an input signal without the benefit of feedback.
Open-loop control is useful for well-defined systems where the rela-
tionship between input and the resultant state can be modeled by a
mathematical formula. The feed-forward controller uses the input sig-
nal (and may be disturbance or noise signals) to determine the control
input that will make the system target achieve the desired output. 3.2
shows the typical schema of such control system.

One problem of this approach is that to construct it we need an ac-
curate model of our system and the mechanism must be robust enough
to changes in environment. Let’s imagine that we have an Apache
Tomcat application server and we want to configure it to do not con-
sume more than 75% of CPU, when can achieve that setting the max
number of worker threads, as they are in charge of accept clients, dep-
pending on how much of them we have much CPU the application will
consume. Let’s supose know that we want to change it to 50% which
will be the correct max worker threads value? To find the correct
number of threads we would need to know our system in detail. We

3.3. ARCHITECTURE 85

Figure 3.1: Open-loop control system bloc diagram

cannot apply lineality between worker threads and CPU consumption,
the only way to find the correct realtion is by empirical experimen-
tation. An incorrect setting would drive the system to a no desirable
state unpossible to repair through that control system.

Unfortunately the typical ebusiness systems are much complex
than a simple Tomcat, if we only introduce a new tier to the server (a
data base) the system is practically impossible to control with open-
loop. It’s easy to see that, lets take the last example and we suppose we
can control the CPU consumed by setting the number of max worker
threads on Tomcat, due to all the requests made by the clients are
different surely the requests to the database will be very different (in
time and cost). This is very difficult to predict and could cause that
worker threads stopped waiting for database response which will imply
a different CPU consumption than we expected.

It’s very difficult to implement an open-loop control system that
manages with unpredictable changes as occurs with typical workloads
of public web servers.

Closed-loop (or feedback) control systems use the measured out-
puts to determine the control inputs. In ?? we have a diagram that
shows how such type of systems typically work. The control system
adjust the values to achieve a measured output as similar as possible
to the reference input with the help of the output measures obtained
from the last settings. This enable the system to readjust itself even
under unpredictable situations.

The design of feedback control systems it’s a very complex task,

86 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

Figure 3.2: Closed-loop control system bloc diagram

there are some properties that they must have, but the most important
it’s stability. A system it’s said to be stable it for any unbounded input
the output is also bounded. There are some mathematical approaches
that make a theoretical treatment to that problem [9].

Obviously this type of systems also involve knowledge of applica-
tion (not as deep as open loop) but we always have to be careful of
stability. Remember last example where we had Apache Tomcat with
a database, if we use now a closed-loop control system to control Tom-
cat CPU Consumption, suppose that our design it’s not good enough,
we could have a situation like the following: Most of the clients are
making requests that involve large database queries, so there are a
lot of worker threads stopped. An improperly designed control system
would, for example, increase (with inverse proportion of measured out-
put) the number of workers, as the CPU Consumption is very low the
new number of workers threads is so high than if all database request
turn to be short the system would collapse.

Although open-loop systems are less difficult to design, they can
only be used in very stable and controlled environments, but in com-
puting systems the major part of environment are unpredictable, for
that reason the most typical autonomous systems are designed using
feedback control.

An autonomous system with fixed states that use closed-loop con-
trollers is more easy to design, as if there are instabilities you can
notice easily about them, although with this approach we can loose
some of benefits some times it’s worthy to have a less intelligent system

3.3. ARCHITECTURE 87

that never fails than a clever but unstable one.

3.3.2 The Autonomic cycle

There are several approaches to achieve a self-manager platform in
terms of architecture, we introduce here the one we used with very suc-
cessful results in the past [?] which is based on IBM’s architecture[2].
This is not the only one but we think it’s enough representative to
describe the typical components of self-managed systems and we can
consider the rest of them as little variations of the one described here.

The IBM’s original proposal described four basic components that
work together in a life-cycle to adapt and efficiently run a system
in constant flux. These components combine to provide a service in
accordance with the policies of the application or system and can con-
tinuously adjust themselves while conforming to dynamically changing
factors through out its run time. This simple but powerful concept has
attracted a lot of attention recently [8, 4, 3]] as it can provide a solution
to help operators navigate and run modern day servers, which have
become increasingly perplex and intricate environments over time.

The four components that are needed in an Autonomic System, as
described by IBM 3.4, are a General Manager, an Autonomic Manager,
Touchpoints and Managed Resources.

The General Manager decides which policies should be used to con-
struct an overall plan. This plan is then used to guide the application
or system and tell it what it has to do to reach a desired healthy state.

The Autonomic Manager is very similar to the General Manager,
having an analogous life-cycle, with the goal of producing and execut-
ing a plan according to predefined policies. The Autonomic Manager
component performs this at a lower level however and is therefore of-
ten considered the “core” of the autonomic system. It takes care of the
self-management life-cycle whereby it reads the system and manages it
according to the changes in those readings and their relation with the
identified policies of the system and application. Managed Resources
are those resources that the self-managed system is able to control. It
could map directly to a physical resource such as a hard drive or it
could be a logical resource such as a communications channel.

A Touchpoint is essentially an interface which is used to link the
Autonomic Manager to the Managed Resource. The interface has two

88 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

Figure 3.3: Autonomic computing layered architecture

different methods for providing interaction between these components.
The first, sensors, enable us to consult and check the system’s behavior
second, effectors, actually let us modify the behavior that resource. We
can calculate and change the system state using these.

We can find variations of this architecture, they have this layers
defined in a different manner, but in essence they are all the same.

The self-managed life-cycle ?? is a general mechanism with which
any application can manage itself and consists of four distinct phases;
monitoring, analyzing, planning and executing. Initially it needs knowl-
edge of the different possible states of the system and how they can
be determined using the values available from the sensors. At startup
the A.M. can load all of this as well as the policies which will be used
to plan the running of the application. Once it is up and running,

3.3. ARCHITECTURE 89

the monitoring phase is where it calls the sensors of the resources and
reads their values. Having completed monitoring, it moves on to the
analyzing stage, where it compares the values obtained in the mon-
itoring phase with the possible states to calculate the current state.
The planning stage is entered next and a plan is formulated based on
the current state we are in so that the system can be led to its desired
state. Finally the Autonomic Manager executes this plan by making
calls to the effectors of the Managed Resources. The manager repeats
the entire cycle every X seconds to capture any changes and adapt its
policies.

Figure 3.4: Autonomic computing life-cycle

The parts of this architecture that require more attention are the
analyzing and planning states, where the system choose itself the be-
havior of the following step. The policy mechanisms described in the
further section applies in this stages, some of them combining, in prac-
tice, both into one only stage.

90 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

3.4 Achieving Self-management

The final idea of autonomous systems is to translate high-level direc-
tives into specific actions to be taken by elements. This is achieved
by the use of policies. The policy represents the desired behavior,
this policy-based self-managed systems has been studied since some
time ago [17], [19]. To present the broadest situations in policy-based
systems we use the same approach than Kephard and Walsh in [10].

They divide possible designs in three types: action policies, are
self-managed systems driven by conditions like IF (Condition) THEN
(Action), e.x. IF (CPU consumption is greater than 80%) THEN (Re-
duce the number of worker threads). This are the most simple policy
based systems. The system get the values measured by the sensors
and applies the rules that satisfy the condition. The next type are
goal policy based systems. This type of systems specify the desried di-
cisions to be attained without specifying how to attain them, e.g. CPU
consumption can not exceed 66%. This approach is better that the
first, because the administrator don’thave to know detail of applica-
tion internals, and this facilitates the communication between different
autonomous elements. The most complex design are the ones that use
utility funcitions policies. The utility function specifies de desirability
of alternative states. This is done assigning generical values to all the
possible states. The goal of this system is to maximize the utility, this
is the best approach as allways get the better solution, the one that
maximizes the system’s overall utility. The last ones can be viewed as
a subgoup of the goal policy based ones.

The location in the autonomic cycle of the different mechanisms
described in this section involve the analyze and plan stages of the
cycle. All the systems presented describe the way the values measured
form the system are treated and how and why decisions are taken.
Although here we present this mechanism as one, is usual to divide
the task, like we described in the architecture section, first analyzing
the measured values and then determining the actions to take, in the
plan stage.

This methodologies are often used to control and decide the allo-
cation of resources in shared platforms [5]. They are useful because
the changing resource demand of such environments needs intelligent
control system to avoid wasting resources. I

3.4. ACHIEVING SELF-MANAGEMENT 91

3.4.1 Action policy based

Action policy based mechanism is the most direct way to implement
a self-managed system, it’s based on the principle of action-reaction.
All the decisions taken by the manager follow the If (CONDITION)
Then (ACTION) statement.

Once obtained the actual state or position of the system through
the sensors, the next step is to make some action that directly or
indirectly drives the system to another state 3.5. The idea of the
action polices is that changing one or some of the effectors the system
will change to the desired state.

Figure 3.5: States and actions

This type of policy systems make the assumption that changing the
effectors the systems is going to change as we expect with a high prob-
ability. This implies that the designer of such systems must know not
only the internals of the application but it’s behavior when changing
some of its configurable parameters and effectors.

We can find two examples of action policies in [1], [7], although
the two papers implement action policy based techniques to achieve
the QoS requirements the main difference between them is that while
the former uses an “atemporal” event based system the framework

92 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

developed by the second is done using a “life-cycle” which obviously
involves frequency.

Efstratiou et. al.in their paper describe an interesting way to
achieve the self-management porting some ideas from event calculus.
The idea is take some of the reasoning of event and changes and con-
struct an action-policy guided by events. They define the states as
specific situations that have some time duration, this states are de-
fined by the events that can initiate or terminate them. This allows to
define predicates and with this predicates we can evaluate the different
states of our systems. and following the if (condition) Then (action)
make the system change.

As we can see the system does not depend on any time controlled
daemon, the systems changes depending on the event values, the time
dependency relies on how we define the states not on the frequency of
taking sensor measures.

On the other hand Lutfiyya et. al. implements the typical action-
policy based system. Instead of changing the system when an event
occurs there is a cycle that repeats until end of application that take
a decision on each turn. They use their own formalism to specify
policies.

One example of action-policy algorithm would be 3.6, this is the
typical example where we have a QoS we must achieve and while is the
taking decision or plan cycle. The allocation reduction or improvement
could be changed for the change of effectors depending on the system.

As we have seen the action-based policy self-managed systems do
not specify the state in which the system should be, as we will see
that occurs in Goal-policy based ones, the system is programmed to
make actions depending on conditions, this has high reliability in
the action-reaction principle.

The major inconvenient of this systems are firstly that the designer
of such systems must know in detail the behavior of the application
although this is common in all self-managed systems it has more rel-
evance on this systems due to the “low level” programming of them.
With low level here we mean that the designer has to set values for
all effectors, may be guided by a high-level policy, but there is more
manual component. The system relies on a human that explicitly gives
it the rational behavior

The second and also very important issue is that this type of sensors

3.4. ACHIEVING SELF-MANAGEMENT 93

Figure 3.6: Action-policy algorithm

doesn’t guarantee the stability of the systems, as typically the decision
taken does not depend on past states. This implies that we could
have an oscillating systems, this problem is typical in feedback control
systems [9]. It’s difficult to detect such type of problems in this type
of systems as we do not have clear view of the system behavior under
all the different possible conditions.

Note that the designer must choose the states in a way that they
cover all the possible “space of states” and assure that each state is
mapped with an unique action. This often drives to conflicts among ac-
tions, which might be not detectable via semantic checking and might
surface only at runtime.

Another inconvenient of such systems is that the system could not
react as we expect, when constructing them we assume that the actions
taken by the system when it’s in an A state will drive to B (more
desired) state. In some situations, this could not be true, specially if

94 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

we do not control all the possible variables that influence our system,
as usually happens. We can minimize this effects ensuring that we
cover the whole space of possibilities when designing the states of our
system.

3.4.2 Goal policy based

These type of policies don’t use the If (condition) Then (action) con-
ditional structures, the idea is to define a preferred state or group of
preferred states instead of specifying exactly what to do when we are
in a concrete state.

The choice for that desired states can be done in several ways,
for example J. Rolya in [11] made an statistical approach in order
to determine the demand of the application, with the demand of the
application you can easily see when the system is overloaded and from
them define the desired states for the application. May be a more
typical approach is to extract demands and possible configurations
from a queue model [16], which doesn’t have the real component of the
former empirical method but can give you more specific information
as you can study concrete parts of the application.

A more complex approach is done by Chandra in [?] where they use
modeling unitedly with online measures which becomes what we can
call online modeling, it’s a more adjusted approach as the parameters
of the model are set online, and the results are recalculated every
cycle-time.

All of this methods have the common property of not relying in
explicit encoding, any of them fixed the actions to do when the appli-
cation is in a concrete state, the self-managed system make predictions
based on application’s previous behavior and regulates itself in func-
tion of the measured sensor’s values in order to achieve a desired state.
The policy or the high-level rule here is applied at design level by tak-
ing the prediction model and configuring it corresponding to designers
interest.

Another way to construct a goal-based is through control theory
[23], this approach doesn’t require any a priori modeling. The sys-
tems tries to adjust a fixed input value setting the effectors correctly.
There is a reference input fixed, which it is not any measured sensor
of the application, and the self-managed systems regulate the effectors

3.4. ACHIEVING SELF-MANAGEMENT 95

in order the get an output as similar as possible to the reference input.
The reference input is the desired value of the system’s measured out-
put the controller adjusts the setting of effectors so that it’s measured
output is equal to reference input, and the transducer transforms the
measured output so it can be compared with the reference input.

This type of systems are much more complicated that the action-
based ones, as they can involve a more theoretical approach using
control-theory.or the design of complex queuing models.

As we have seen in this models there aren’t any prefixed state as
in action-policy based ones, here the states are more abstract. If we
think in an state as a vector of sensor values we could say that in
action-policy based systems this change discreetly while in goal-policy
based one they change in continuous way.

Note that this type of systems could have problems in situations
where the resources are scare and the system can’t satisfy all the goals,
or when resources are plentiful and multiple states might satisfy the
goals and the system is not able the choose the better state among the
correct ones.

3.4.3 Utility function based

What we talk about when we talk of utility functions? The term Utility
function comes from a branch of economy called Consumer theory [20],
it is used for indicate or measure the relative happiness or satisfaction
of consumers when buying goods or services. The particularity of
this approach is that expresses utility in function of real goods (pe.x.
kilograms, litres,....) instead of nominal goods (dollars, euros).

In economy say that there are two rules in optimizing behaviors
utility maximization and profit maximization. The idea is apply the
utility maximization to computer systems.

The utility is a numerical rank value assigned to each option in a
choice. This rank is in a way that the most preferred is the one that
have the high utility value. To qualify as a true utility scale however,
the rating must be such that the utility of any uncertain prospect
is equal to the expected value (the mathematical expectation) of the
utilities of all its possible outcomes (which could be either ”final”
outcomes or uncertain prospects themselves).

The decisions taken by a rational agent can be easily mapped to a

96 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

numerical range, in a way that we can easily rate any possible outcome
“simply” comparing and ranking them. For example if A is preferred
to B and B is preferred to C it’s clear than A would be preferred to
C. Although it can seem easy, it’s sometimes difficult to find a rating
system that posses the above described fundamental property.

One theoretical way to do so is to compare prospects and/or final
outcomes to tickets entitling the holder to a chance at winning some
jackpot, which is at least as valuable as any outcome under consider-
ation. A ticket with a face value of 75% means a chance of winning
the jackpot with a probability of 0.75 and it will be assigned a utility
of 0.75. Anything which is estimated to be just as valuable as such a
ticket (no more, no less) will be assigned a utility of 0.75 as well.

In real life, utilities are not linearly related to money values (or
else the lotteries would go out of business), which is another way to
say that the mathematical expectation of a monetary gamble need
not be the proper utility measure to use. The monetary expectation is
only a special example of a utility, which is mathematically acceptable
but not at all realistic. It is, unfortunately, given in elementary texts
(which do not introduce the utility concept) as the sole basis for a
rational analysis of gambling decisions.

The use of utility-based resource allocation in computer systems
goes all the way back to 1968 when Sutherland [18] presented a fu-
tures market in which the users could bid for computer time based on
their own utility functions. They has a server that had to be shared
among students and faculty members, in order to give priorities they
distributed some virtual currency in function of projects importance.
They could reserve the computer paying with the virtual money and
it was returned once the users had used their reserved time. A user
could not bid more than he could afford so the users with the most
yen had the advantage.

Since there there have been many applications of utility function
based model to computer systems, most of them to autonomous sys-
tems. We can find several recent examples of self-management (or in
this case better said self-optimizing) systems in [6], [22], [12], [13], [21].

The utility function based model for self-managed systems can be
viewed as an extension of the goal policy based model, rather than
performing a binary classification in desirable or non desirable states,
they assign a real-valued desirability to each state. The author no

3.4. ACHIEVING SELF-MANAGEMENT 97

specifies a preset desired state, instead the system tries to achieve the
state that has the higher value of utility function.

A utility function is written as U = f(x1, x2, x3,...xn) where xi
are “real goods” that contribute to utility, in a computer system xn
could be for example resources allocated, demand space, etc... thinks
that we can obtain from our system but by themselves doesn’t attain
knowledge.

The use of linear utility functions is disallowed, because proper
utility function must be bounded when the stakes are potentially un-
bounded, this makes more typical the use of exponential functions
instead.

For better understanding of how utility functions are used we can
take a look to [22] or [12] where this theory is applied to a Data center,
in order to achieve a self-optimized application. In both systems the
architecture used 3.7 has different autonomic levels, the Resource ar-
biter and the Application Managers, each of one is able to allocate o re
deallocate resources at it’s own level. The applications managers send
the utility functions U(SiRi) calculated to the resource arbiter in order
to allocate the resources maximizing the global utility:

∑
U(SiRi). In

these examples the variables S,R can be for example service demand,
resource levels (CPU utilization), using simple functions we can obtain
a numerical value for the utility function

∑
U(SiRi).

Figure 3.7: Architecture of the data center

The values used as variables in utility functions can be measures

98 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

sensors or values obtained from simulation, any kind of variable that
give us information about the system.

3.5 Conclusion

This chapter pretends to give an overview of self-managed systems,
more in concrete in the decision part of such systems. The chapter
explains the different ways to implement policy based self-managed
systems and give some examples and references that implement them.

In the first section we introduced the two main different approaches
of self-controlled systems, open-loop and closed-loop. Most of self-
managed systems are designed following the feedback system. It’s
very important to know the typical problems that this type of systems
has when designing them. There are some solutions to these problems
that comes from the mathematical treatment and can be applied to
the IT systems.

We have exposed an architectural approach, based on IBM’s one,
and that we think it’s the most general one. It’s important to follow a
well structured architecture as this simplifies the overall process of de-
signing and also makes more easy the interaction between the different
parts.

We could locate the policy system in the Autonomic or General
Manager layers and in the analyse and plan stage of the that Managers.
The classification can be divided, basically in two great blocks ,the
action based and the goal based, we have also considered a very large
and important subgroup of goal systems the utility function based
systems. The action policy based systems are the most simple when
implementing but is the one that requires much low level knowledge of
the system. The goal policy based is more complex but more effective
method and the utility function based systems are the most effective
and the most emerging ones.

As we have seen the self-managed systems comprises a large set of
disciplines and can be applied to very different types pf systems. The
approaches used are different in every system but the most of them
follow the classification proposed. This indicates that although we can
classify them there is a lack of standardization in this area, due to the
different requirements of the studied systems.

3.6. FUTURE TRENDS 99

The utility function self-managed systems seems to be, by th mo-
ment, the best approach to this type of autonomous systems.

3.6 Future Trends

It’s difficult to say what will be the standard or the facto of au-
tonomous systems in the following years, because their application
is wide and depending on the area where it applies.

One of the future trend, in our opinion will appear, is the adding
of simulation in the taking decision stage. This technique consists in
make some simple and quick simulations, using different configura-
tion parameters, the choice of this parameters can be done through
several ways ex: using genetic algorithms. The simulator give the sys-
tem which is the most appropriate configuration for the next interval.
With the help of the simulator we could predict the behavior of the
application with high accuracy.

Autonomic systems are a mix of knowledge and techniques from
very different areas, in our opinion is in that mixing of specialities
where the most effort has to be put. Which a which probability tech-
niques developed for artificial intelligence will be more involved in
the self-managed management. One of the goals of the architecture
described in the previous section is that enables and facilitates the
interaction of such different contributions.

What is clear is that the future trend is to isolate from the low
level and apply techniques as utility functions or discontent functions
to negotiate SLA, this implies that the self-managed systems have to
treat with them.

100 CHAPTER 3. SELF-MANAGED POLICIES, A SURVEY

Bibliography

[1] N. Davies K. Chevers C. Efstratiou, A. Friday. Utilising the event
calculus for policy driven adaptation on mobile systems.

[2] IBM co. An architectural blueprint for autonomic computing.
www.ibm.com, 2004.

[3] M. Spreitzer M. Steinder D. M. Chess, G. Pacifici and A. Tantawi.
Experience with collaborating managers: Node group manager
and provisioning manager. In Second International Conference
on Autonomic Computing, pages 39–50, 2005.

[4] M. Bennani D. Menasce and H. Ruan. On the use of online an-
alytic performance models in self-managing and self-organizing
computer systems. pages 128–142, 2005.

[5] M. Bennani D. Menasce and H. Ruan. Dynamic resource provi-
sionign for self-adaptative heterogeneous workloads in smp host-
ing platforms. 2007.

[6] William E. Walsh Jeffrey O. Kephart Gerald Tesauro, Ra-
jarshi Das. Utility-function-driven resource allocation in auto-
nomic systems. 2005.

[7] M. Katchabaw M. Bauer H.Lutfiyya, G. Molenkamp. Issues
in managing soft qos requirements in distributed systems using
policy-based framework.

[8] D. Ardagna C. Francalanci J. Almeida, V.Almeida and M. Tru-
bian. Resource management in the autonomic service-oriented
architecture. pages 84–92, 2006.

101

102 BIBLIOGRAPHY

[9] S. Parekh D. Tilbury J. Hellerstein, Y. Diao. Feedback Control of
Computing Systems. John Wiley and Sons, 2004.

[10] W. Walsh J. Kephart. An artificial intelligence perspective on au-
tonomic computing policies. In Fifth IEEE International Work-
shop on Policies for Distributed Systems and Networks, volume 0,
page 3, 2004.

[11] Martin Arlitt Artur Andrzejak Jerry Rolia, Xiaoyun Zhu. Sta-
tistical service assurances for applications in utility grid environ-
ments.

[12] Marko Kankaanniemi. Self-optimization in autonomic.

[13] Terence Kelly. Utility allocation directed. In First Workshop on
Algorithms and Architectures for Self-Managing Systems, pages
2003–2115, 2003.

[14] M. Parashar and S. Hariri. Autonomic computing: An overview.

[15] H. Tianfield R. Sterrit, M. Parashar and R. Unland. A concise
introduction to autonomic computing.

[16] Omer M. Asad Wei Jin Amin M. Vahdat Ronald P. Doyle, Jef-
frey S. Chase. Model-based resource provisioning in aweb service
utility.

[17] M. Sloman. Policy driven management for distributed systems.
In Journal of Network and Systems Management, volume 2, 1994.

[18] I. Sutherland. A futures market in computer time. In Communi-
cations of the ACM, volume 11, pages 449–451, 1968.

[19] WebPage. Policy workshop: International workshop on poli-
cies for distributed systems and networks. http://www.policy-
workshop.org/.

[20] WebPage. Econ model. http://www.econmodel.com/classic/terms/utility function.htm,
2007.

[21] Baochun Li Weihong Wang. Market-based self-optimization for
autonomic service overlay networks. In Selected Areas in Com-
munications, IEEE Journal, volume 23, pages 2320–2332, 2005.

BIBLIOGRAPHY 103

[22] Jeffrey O. Kephart Rajarshi Das William E. Walsh, Ger-
ald Tesauro. Utility functions in autonomic systems. 2004.

[23] Sujay Parek Rean Griffith Gail E. Kaiser Dan Phung Yixin Diao,
Joseph L. Hellerstein. A control theory foundation for self-
managing computing systems. 2005.

104 BIBLIOGRAPHY

Chapter 4

Comet architecture for
web applications

Sergi Baila and Vicenç Beltran

Abstract

The last two years have seen a revolution on the way web applica-
tions are developed. The popularization of new techniques under the
acronym AJAX (Asynchronous Javascript and XML) has made web
applications a lot more interactive and closer to desktop applications.
At the core of this new approach is the ability of a web page script to
send requests to the server without user prior action. This breaks one
of the limitations of web applications and the HTTP protocol, and
now a web application can trigger an asynchronous partial page up-
date which makes applications a lot more responsive and interactive,
and also hides latency effects.

This technology has evolved and has become quickly a new foun-
dation for developing web applications which are closer to desktop ap-
plications. Web mail, calendars, instant messaging... Also, common
bussines software is starting to be developed as a web application, even
on intranet scenarios. However, AJAX is still limited by the under-
lying HTTP protocol and it’s request/response cycle. On this known

105

106 CHAPTER 4. WEB PUSH

client-server architecture the browser is the one which always initi-
ates actions (send requests). Desktop application frameworks, based
mainly on the MVC software pattern, implement GUIs which are based
on an event-response model. Events can be fired on the client side but
also on the server side. Web applications face a significant problem
here. Perhaps even bigger than common desktop applications which
tend to be single user whereas web applications are starting to be de-
signed from the beginning as multi user applications. So the need for
a server propagated event model is more necessary.

Comet is a new approach which uses an open idle connection,
mainly unused, until there’s a need for the server to push information
to the client. This allows the push of events from the server to the
client, so the gap between desktop applications and web applications
is further reduced. But keeping an open connection per client breaks
classic servers’ scalability where you have one thread per connection.
New server implementations based on asynchronous I/O are already
available, which can handle thousands of connections with just a pool
of threads.

This chapter introduces AJAX and Comet architectures, the new
frameworks, and the servers which implements them on top of asyn-
chronous I/O. We also analyze the new problems introduced by these
technologies. AJAX relies completely on JavaScript, the DOM model,
CSS... all web technologies which are now starting to see standards
compliant products. Portability is one of the first problems encoun-
tered by an AJAX developer even between minor revisions of the same
browser. Also, usability of web applications suffers from the AJAX ap-
proach as existing mechanisms for disable people aren’t prepared yet
for this new technique.

4.1 Introduction

On February 18th 2005 Jesse James Garret published a short article[1]
on his company website coining a new buzzword on the internet world.
No one suspected that essay would be seen later as the first milestone
of a revolution on the way we understand web applications. There was
no new technology, because the ingredients were present for some time,
nor there was no new product. Instead he pointed to existing products

4.1. INTRODUCTION 107

like Google Suggest or Google Maps. But that short name, AJAX, was
rapidly spread among technological publications, blogs and sites.

But that was just the name. Most people, me included, had the first
encounter with the new technology and a glimpse of the possibilities
behind with a sub project from Google called Google Suggest (back in
2004). It was a simple product, just the google page with a twist added:
as soon as you start typing the web page started to show suggestions
of searches along with estimated result count. So you typed ”car re”
and google suggests ”car rentals” but also ”car reviews” and so on.
Most non technical people saw it’s speed and ease of use. We technical
people were amazed as how it broke the classic HTTP request response
and full page reload mechanism.

The magic behind relates to the XMLHttpRequest object, which
was created by Microsoft (as the ActiveX object XMLHTTP) and
later (2002 and beyond) was implemented on Mozilla and some other
browsers. This object allows to send an HTTP request and retrieve
the response as an asynchronous javascript method call. This is what
Google Suggest uses to send a request to a server each time there’s a
keystroke and then parsing the HTTP response.

So the evolution of the usage and impact of this technology has
been somehow exponential. It took nearly four years to reach a side
project on google, then some other sites started using similar effects
(GMail, Google Maps, Flickr, ...) and a name was adopted on 2005.
That same year saw the explosion of the technology. This can be
considered the first milestone of the future web applications.

There has been always a clear gap between web applications and
desktop applications. Before 2005 the answer to the question ”do
we need a web application or a desktop application?” was easily an-
swered because web applications were very poor and the only advan-
tage was that they are distributed and easily available applications
with a very thin and common client. Then came AJAX and appli-
cations like GMail which broke the limitation of the full page reload
model based on the HTTP request response model. It was not the first
step nor the last, but an important one. The HTTP protocol was not
designed as a foundation of general purpose applications. Actually,
it was not designed with any application on mind, even classic web
applications. One of the first important limitations resolved in the
past was the stateless property of the protocol. Today with the use

108 CHAPTER 4. WEB PUSH

of cookies or URL rewriting, and with every web developer framework
supporting sessions, this seems an easy task. We are here to take a
look at the next step to narrow the gap between desktop applications
and web applications: Comet or how can you build a event-based web
application.

4.2 Background

In this section we provide the necessary background information for
those not familiarized with web technologies. Some concepts of the
HTTP request response model are presented. Then we introduce the
JavaScript environment available on web browsers and we dive into
AJAX as the precursor technology for Comet.

4.2.1 HTTP model

The Hypertext Transfer Protocol is a communications protocol de-
signed mainly for the retrieving of HTML pages and accesory elements
(CSS pages, images, etc.). It is a request/response client/server proto-
col. That means that the model is clearly and strictly defined[2]: the
client (browser) sends a request to the server which reads the whole
request, processes it and returns back a response (see figure 4.1). An
HTTP client (known as the user agent) establishes a TCP connection
on port 80 (the standard one, but could be any) of the web server in
order to send the request and retrieve the response. The server listens
to that port and can serve multiple clients simultaneously.

The HTTP model has several limitations for developing a web ap-
plication. It is a stateless protocol, bonded to a strict request/response
cycle. The stateless problem was solved with the use of cookies or
URL rewriting to keep a session between the client and server. Until
recently, that was the foundation for developing web application, and
is what we call here the classic model (figure 4.1). On this classic
model each time there was an action from the user the browser sent
a request to the server which resulted on a new page loaded. This is
what we call the full page reload model. Given current network la-
tency, even on a local area network, is very difficult to develop a web
application with the same funcionality as a desktop application. We

4.2. BACKGROUND 109

Figure 4.1: Classic HTTP model

will see how AJAX solves this and brings us the next model.
Another problem arises with a Comet architecture that we will

explore on a next section and is introduced by a HTTP protocol limi-
tation. The protocol [2] limits (by suggestion) the number of simulta-
neos connections from a user agent (browser) to the server to just two.
Using new techniques like HTTP pipelining and a classic or AJAX
model this is not of much concern. But with a Comet model using a
permanent connection there’s just one left.

4.2.2 JavaScript

JavaScript is nowadays a real distributed execution environment, be-
ing the standard language for script execution inside web pages. Its
real name is ECMAScript[3] and its evolution is tightly close to that
of the web browsers. This scripting language allows, within a browser,
to manipulate most of the components of the web page (the document
structure via a DOM(Document Object Model)[4] interface). It is a
quite powerful language which not only can manipulate the Document
Object Model but also can be used to listen on events, use it asyn-
chronously, parse XML and even send HTTP request from within a
web page without triggering a complete reload (this is the base for
AJAX).

110 CHAPTER 4. WEB PUSH

Figure 4.2: AJAX HTTP model

4.2.3 The AJAX model

For years web developers had faced the problem of having a full page
reload every time they wanted to get or set new data to or from the
server. But the advent of the XMLHttpRequest object and it’s easy
asynchronous usage led quite rapidly to a new breed of web applica-
tions. There was no more a synchronous and closed request and re-
sponse cycle. We can now have a request sent on the background which
response triggers a partial change (thanks to the ability of JavaScript
to manipulate the page through the DOM). We can have then partial
page updates, background server communication and requests made
by programming logic and not subject to user interaction. We will call
this the AJAX application model as seen in figure 4.2.

The AJAX acronym [1] stands for Asynchronous JavaScript And
XML. The original concept was suposed to use XML as the language to
encapsulate the response where the JavaScript has the ability to parse
it and modify the page state and contents via the DOM interface.
Some applications use that model, but most of the time developers
use a simpler and stripped down model where the response is just
HTML (partial page) and the action to do is just replace some part of

4.3. INTRODUCTION TO COMET 111

the page. Also a common usage is encapsulating JavaScript code on
the response so the server can trigger any event on the page. All of this
work has been greatly simplified with the development of JavaScript
frameworks like Prototype or Dojo.

4.3 Introduction to Comet

As J.J. Garret coined the word AJAX there was also a blog post from
Alex Russell [5] where he tried to follow the same path coining the
Comet term to refer to the possibility of the server to send events
to the client without having to wait for a request from the browser
to arrive. Also as with the AJAX term, there were prior works on
the area to solve the problem of a web application being unable to
receive asynchronous events from the server. We’re just referring to
this milestone as a signal of the maturity of the idea.

The reason for this need was actually a consequence of the exit
of the AJAX architecture. A great number of new highly functional
web applications were developed with AJAX and both developers and
users wanted to push developments further [6]. But as interactive
it was an AJAX application it lacked a core mechanism from desktop
application: real time updates. Developers notice that it was necessary
to propagate events from the server to the client in order to have an
event-driven web application.

The problem again was the HTTP protocol. It’s a client-server
protocol, without option to the server to contact the client. Also,
given the diversity of networks and connections between browsers and
servers, building any mechanism for the server to open a connection
to the client is out of the equation.

So there’s only one solution possible (without severe modifications
of the underlying protocol). To have an open connection idle just
waiting for an event on the server (any Comet client should have one
then). So when the server has to send an event to one, some or all
of the clients, it just uses the open connection (which is a standard
HTTP connection). You can see figure 4.3 for a diagram of the Comet
model with an HTTP streaming connection technique. The beauty
of the solution is that it works. And works without modification of
clients, servers, protocols, etc. Unfortunately, the problem introduced

112 CHAPTER 4. WEB PUSH

Figure 4.3: HTTP streaming Comet model

is of a different nature. The servers suffer from a scalability problem
with this architecture. [5] [7] [8] [9]

4.3.1 Comet architecture

The tradicional implementation of web servers, specially an application
server (like a JavaEE server) uses a pool of threads to manage incoming
connections. When a new connection arrives it’s established and a
thread from the pool is assigned to the connection. Request is read,
code is executed and a response is generated and sent. Then, the
thread returns to the pool. This is designed under the assumption that
requests are short in duration but intensive in computing resources.
But a Comet connection is established and is expected to be long
in duration (can be several minutes) and very low CPU or memory
intensive. The connection is only required for sending events to the
client and just keep the connection open.

A classic web application can handle easily on the order of tens
of thousands of simultaneous users, because users are not sending re-

4.3. INTRODUCTION TO COMET 113

quests all the time. So the number of active connections on the server
is always a fraction of the users of the application at any given time.
With a Comet architecture each user on the system is an open connec-
tion on the server and a thread (with a classic model) which is locked
to the opened connection. Even if it’s not doing something, any server
has problems managing tens of thousands of threads.

The servers need to be redesigned around this new problem. The
solution comes from a know mechanism, asynchronous I/O, which has
existed in modern operating systems for a log time. C programmers
know it as the select() or poll() system call. Java, for example, has
support for it since version 1.4 with the introduction of the java.nio
packages. [10] [11]

The new design decouples the one to one relationship between con-
nection and thread. There’s also a thread pool, but threads are also
used to process active connections, not connections which are not han-
dling data. Of course, developers of server side components need to do
some modifications, but they’re only needed on the comet handlers.

Besides scalability on the server the Comet architecture introduces
another subtle problem on the client side. The HTTP protocol [2]
limits on 2 the number of simultaneous connections to a server. Using
at least one for a Comet connection leaves the whole page with just
one connection. As the page is probably using the AJAX model it’s
obvious that a complex or simply slow response would block all the
other connection and leave the page unable to send any other request
as we have the two connections busy: one for the comet connection and
another waiting for the slow reponse to an AJAX call. So this is nearly
impossible to circumvent but it can be alleviated. One necessary step
is to stream all Comet communication to the same and only connection
as no page can afford to have the two connections busy on different
components.

We’ve seen that the Comet architecture posses a series of challenges
both on the server and the client. We are now presenting the internal
details and work done on the model.

4.3.2 Bayeux protocol

As a non standarized architecture Comet faces significant interoper-
ability problems. Actually there are as protocols as implementations.

114 CHAPTER 4. WEB PUSH

Some of the major names behind certain libraries and servers are push-
ing for a standard protocol of communication between a Comet client
(JavaScript library) and a Comet server component. The result of
this is the Bayeux protocol [12] with the Dojo Foundation behind it.
There’s also work in progress from the authoritative source W3C for
HTML 5 server sent event listeners [13] but without any real work
impact yet.

The lead person behind Bayeux is Alex Russell from Dojo which
guarantees a certain level of notoriety for the protocol. As he states in
his first post [?] about Bayeux: ”One of the biggest problems facing
the adoption of Comet is that it’s, by definition, not as simple. It’s
usually not possible to take ye-old-RESTian HTTP endpoint and sud-
denly imbue your app with realtime event delivery using it unless you
want your servers to fall over. The thread and process pooling mod-
els common to most web serving environments usually guarantees this
will be true. Add to that the complexity of figuring out what browsers
will support what kinds of janky hacks to make event delivery work
and you’ve got a recipe for abysmal adoption. That complexity is why
we started work on Bayeux.”

As they define it: ”Bayeux is a protocol for transporting asyn-
chronous messages over HTTP. The messages are routed via named
channels and can be delivered: server to client, client to server and
client to client (via the server)”. The protocol specification is in a very
initial stage but has seen some support from the community which see
it as a good way to push the architecture support and ease of devel-
opment further.

The protocols tries to address the main problems associated with
the Comet architecture. It uses JSON (JavaScript Object Notation)
as the data interchange format to define the messages. Those mes-
sages are clearly defined on the specification and cover all the low
level technical details needed as the handshake, connection negotia-
tion, channel subscription, reconnection, etc. The standarization of
the messages allow the development of interoperable client libraries
and server components. Further, it ensures that key concepts like
negotiation and reconnection are taken into account even for simple
developments. The protocol also introduces a versioning system which
allows to negotiate between client and server for a preferred protocol
level in the same way as the HTTP negotiation works.

4.3. INTRODUCTION TO COMET 115

A key concept on the protocol is the multiplexing of different end-
points for comet components via a mechanism of channels. Each mes-
sage sent with the protocol has a channel destination, which helps
alleviate the two connection limit problem of HTTP. So having differ-
ent server components accessed via Comet no longer wastes multiple
connections but just one. It also helps server components to clean up
and separate things. Another helpful introduction is the identification
of each client with an autogenerated id, much the same way as an
HTTP session id.

Another advantatge of a standard protocol is the support for mul-
tiple connection models and a negotiation protocol. The Comet ar-
chitecture is really a hack over the limitations imposed by the HTTP
protocol, so different connection methods are not only necessary but
desirable to support as many clients as possible. We’re going to take
a look at the different Comet connection models.

4.3.3 Comet connection models

We’ve seen that a Comet architecture needs somehow a permanent
connection to the server in order to be able to receive server generated
events. But the handling of this connection can be different on the
way is managed mainly in the client side but also affecting the server
side. Choosing the right one is not an easy answer [9].

The first one and the first used before the advent of Comet or even
AJAX is the polling connection model (figure 4.4). This can’t really
be considered a Comet model because it’s not receiving the event when
it happens but we’re incluing it here as a base idea which has been
used in the past and is a perfect example of an scenario where Comet
can really help.

Of course this model has a clear scalability problem. As it has
not the problem of keeping an idle connection, the number of polling
request received on the server can be extremely high with a high fre-
quency value which will be desirable in order to make the application
responsive. This model can work with a small number of users even
with an update every 2 or 3 seconds. This model also has other draw-
backs. There is an overhead of a new request and response. Also,
probably the main problem, depending on the application usage some
or many of the connections could be empty, just the client asking the

116 CHAPTER 4. WEB PUSH

Figure 4.4: Polling connection model

server for events and getting a negative response. This overloads the
server and the network for nothing.

Long polling is an evolution of this technique which solves the
problem of the void requests because the server only responds when
there are data to. Meanwhile, the connection is just waiting. You
can see on figure 4.5 that the model just sends a request waiting for
data on the server which also waits until there’s some event. So the
requests are not returning void never, but you have on average as many
connections as clients on that page.

As this model solves the void response problem it may introduce
an scalability problem on those servers which block on the request and
have a classic 1:1 mapping between threads and connections. That’s
because if you want your application to be able to scale to tens of
thousands (or more) simultaneous users you will have at least as many
connections on the web application. So, for example, having 10.000
users on your application means you will have 10.000 AJAX connec-
tions because of your long polling model. That on a classic server
translates to 10.000 threads just waiting (sleeping) on each connection
doing nothing but wasting resources. Even if your OS, TCP/IP stack
and so supports that it’s unlikely your application server do. Fortu-
nately, new servers (Grizzly [14]) and revisions on old ones (Jetty [8],

4.3. INTRODUCTION TO COMET 117

Figure 4.5: Long-polling connection model

Tomcat, Apache) implement what’s called Asynchronous Request Pro-
cessing [14] which is based on non blocking I/O, a mechanism found
on recent revisions of OS and libraries [15] [10].

Of course this isn’t the perfect solution. If the server is pushing
events fast enought you will find yourself in a similar scenario as with
the polling model where you have several connections and a big over-
head for each request/response cycle. Also both models suffer from
the network latency specially as they need to send a new request for
each response (event) received. There’s also some bandwith wasted on
the multiple requests.

This leads us to the third model called HTTP streaming [16], a
model similar to long polling but without closing the connection even
after getting a response (see figure 4.6). The trick here is to use a
transfer mechanism from HTTP [2] called chunked transfer encoding,
which allows to send a response build up of blocks of data (chunks)
without knowing the amount of data and lenght of each chunk in
advance. This fits exactly to a series of events on the server which
need to be propagated to the client without knowing in advance the
number of events, the lenght or most important when they will happen.
This model greatly helps leveraging the network usage as eliminates
the overhead of multiple requests and reduces the latency because the

118 CHAPTER 4. WEB PUSH

Figure 4.6: HTTP streaming connection model

response can be sent without waiting for a request to end.
Even HTTP streaming is of course not exempt from caveats. Not

only the server should support thousands of connections with a limited
number of threads on the pool, on big scenarios you can find yourself
with too many events which can’t be correctly propagated to the clients
because of network congestion. So some kind of event throttling should
be considered.

Surely there are also some challenges that need to be addressed.
For example even with the HTTP streaming connection model there’s
no way that the client can send events to the server on the opened
channel. A bit ironic that the standard way of communication doesn’t
work, but in this case is more a limitation of the XMLHttpRequest
JavaScript construction that needs a complete request before starting
the transaction.

4.4 Scalability issues

There’s no extensive work on the AJAX and Comet impact on perfor-
mance in web environments, and existing work has very preliminary
results [17]. Even without extensive experimental evidences the one

4.5. COMET FRAMEWORKS 119

to one mapping between connections and threads doesn’t seem the
best idea. And not only Comet HTTP streaming or long polling con-
nection models benefit from it, some testing indicates that certainly
most kinds of web application can benefit from it. J.F. Arcand, one of
the engineers behind Sun’s Grizzly server, has done [18] some syntethic
test and real benchmarks over Grizzly asynchronous request processing
module based on Java no blocking library java.nio. The throughtput
of static files and simple JSP and servlets is quite the same (see figures
4.7, 4.8 and 4.9) but a classic connector (Tomcat Catalina) needs a 500
threads pool to match a 10 threads pool on a ARP connector. Testing
the maximum number of users that a website can handle (figure 4.10)
with a maximum response time of 2 seconds on 90% of request and an
average think time of 8 seconds show a clear winner of the non block-
ing model because there is less context switching and more available
memory with the far lesser number of threads of the second model.

4.5 Comet frameworks

As the AJAX and Comet technologies evolve and popularize we see an
increasing number of frameworks appearing. Actually, the number of
AJAX frameworks is growing very quickly [19], perhaps because it’s
quite new technology and the market hasn’t done the natural cleaning
for the best ones. Anyway just a very small subset of this frameworks
support Comet so we’re centering on the most popular ones. We will
first take a look at some of the developer libraries to implement Comet
solutions. We will introduce Pushlets, a combined library which uses a
client JavaScript component and a Java servlet for the other side. As
a different example, Dojo is a more general purpose framework written
completely in JavaScript without server side components. The Comet
part is solved implementing the Bayeux protocol.

We will then introduce three of the server which implement some
kind of asynchronous request processing using non blocking I/O. Griz-
zly from Sun is the web container for their JavaEE server GlassFish
and is built from the ground thinking on asynchronous request pro-
cessing. Jetty is a very popular servlet and JSP container which was
one of the first (if not the first) to implement a solution with its Con-
tinuations mechanism. The newest Apache Tomcat version 6 includes

120 CHAPTER 4. WEB PUSH

Figure 4.7: ARP 2k file static
performance

Figure 4.8: ARP 14k file static
performance

Figure 4.9: ARP 954k file static
performance

4.5. COMET FRAMEWORKS 121

Figure 4.10: ARP maximum number of simultaneous connections with
2s response time

an ARP connector.

4.5.1 Client libraries

”Pushlets are a servlet-based mechanism where data is pushed directly
from server-side Java objects to (Dynamic) HTML pages within a
client-browser without using Java applets or plug-ins. This allows
a web page to be periodically updated by the server. The browser
client uses JavaScript/Dynamic HTML features available in type 4+
browsers like NS and MSIE. The underlying mechanism uses a servlet
HTTP connection over which JavaScript code is pushed to the browser.
Through a single generic servlet (the Pushlet), browser clients can
subscribe to subjects from which they like to receive events. Whenever
the server pushes an event, the clients subscribed to the related subject
are notified. Event objects can be sent as either JavaScript (DHTML
clients), serialized Java objects (Java clients), or as XML (DHTML or
Java Clients).” [20]

The Dojo toolkit is a modular open source JavaScript toolkit (or li-
brary), designed to ease the rapid development of JavaScript- or Ajax-
based applications and web sites. It was started by Alex Russell in
2004 and is dual-licensed under the BSD License and the Academic
Free License. The Dojo Foundation is a non-profit organization de-

122 CHAPTER 4. WEB PUSH

signed to promote the adoption of the toolkit. [21]. Alex Rusell is the
responsible for the word Comet [5] and one of the people behind the
Bayeux Protocol [22] [12]

4.5.2 Server solutions

Grizzly is the HTTP server component for the new reference JavaEE
server Glassfish from Sun. A description of Grizzly from one of his
creators: ”Grizzly has been designed to work on top of the Apache
Tomcat Coyote HTTP Connector. The Coyote Connector is used in
Tomcat 3/4/5 and has proven to be a highly performant HTTP Con-
nector when it is time to measure raw throughput. But as other Java
based HTTP Connector, scalability is always limited to the number
of available threads, and when keep-alive is required, suffer the one
thread per connection paradigm. Because of this, scalability is most
of the time limited by the platform’s maximum thread number. To
solve this problem, people usually put Apache in front of Java, or use
a cluster to distribute requests among multiple Java server. Grizzly
differ from Coyote in two areas. First, Grizzly allow the pluggabil-
ity of any kind of thread pool (three are currently available in the
workspace). Second, Grizzly supports two modes: traditional IO and
non blocking IO.” [15]

Jetty is a 100% pure Java based HTTP Server and Servlet Con-
tainer. Jetty is released as an open source project under the Apache
2.0 License. Jetty is used by several other popular projects including
the JBoss and Geronimo Application Servers. This server was prob-
ably the first breaking the one thread per request mapping with it’s
Continuations [8] and provide a sort of Comet server framework before
even the concept was clear.

Apache Tomcat is a web container developed at the Apache Soft-
ware Foundation (ASF). Tomcat implements the servlet and the Java
Server Pages (JSP) specifications from Sun Microsystems, providing
an environment for Java code to run in cooperation with a web server.
It adds tools for configuration and management but can also be config-
ured by editing configuration files that are normally XML-formatted.
Tomcat includes its own internal HTTP server. Since version 6, Tom-
cat supports a NIO HTTP Connector and has native Comet support.

4.6. CONCLUSIONS 123

4.6 Conclusions

The Comet architecture allows to develop web applications based on
server sent events. Because of the nature of the HTTP specification
the only way to really have near real time event propagation from
client to server is keeping an open connection. We’ve seen this intro-
duces serious scalability problems on servers but they can be and are
being adressed using new models for processing requests based on non
blocking I/O systems.

There are currently production ready servers with support for asyn-
chronous request processing. There are multiple libraries supporting
Comet models and even a standard protocol (Bayeux) with some sup-
port behind it. So it’s safe to say Comet is ready for production and
actually it’s being actually used in several public web applications.

The Comet architecture represents another step into the evolution
of web application like AJAX has been on the last two years. In the
following years we will see a proliferation of AJAX and Comet enabled
web applications that will implement funcionality only available to
desktop applications today.

4.7 Future Trends

The gap between desktop applications and web applications is getting
small. Not also because there are the technical mechanism available
but also because people has started to think about web applications
and browser as the ultimate application framework. Is not unlikely
a future were most of the applications are web based and built upon
web standards [23]. Probably not the ones the current ones but an
evolution. That road would bring several challenges which will need
to be addressed.

In the middle of the nineties there was a boom coming from the
hardware and software major vendors about the thin clients, net clients
or NetPCs. It was a vision of things to come, but as many vision it
was too much ahead of time. Nowadays we can start talking about
the WebOS again, and think of the true mobility where you will have
all your desktop computing environment anywere there’s a Internet
connection. Most of us have already a web based email system which

124 CHAPTER 4. WEB PUSH

we can read from anywhere in the world (who hasn’t read email on
holiday on a very far and remote computer?). Google is one of the
pioneering companies behind products like GMail, Google Calendar
and Google Docs. Today you can have on the web the email, a calen-
dar, a word processor, a spreadsheet, an instant messenger, a music
player, a company files repository... all of the applications most com-
pany computers execute at the end of the day. Mobility is a demanded
requirement today as sales for laptop systems exced desktop systems.
The next step could be simplifying the laptops, making it smaller,
more durable, more usable and rely on the network for bringing the
applications.

This of course is still years ahead but there’s an important wind of
change on the industry and companies like Microsoft and Apple who
mostly rely on selling an operating system should start thinking in
other terms. The software bussines is also changing, and subscription
models are starting to become interesting on a world where someone
cares about the software, updates, storage of data, etc. Will the Win-
dowsOS be hosted on Microsoft server and billed for usage or monthly
rates?

What is clear is that the revolution is starting at the web appli-
cation level and the Comet architecture is just a single step on that
direction.

4.8 References / Further Reading

We’re listing some references with some examples and further readings
work which could be useful to complement this chapter. On [24] AJAX
is applied at the middleware level. Mesbah and Deurse [25] define an
architectural style for a single page AJAX model while Khare and
Taylor [26] propose an extension to the REST architectural style for
decentralized systems. Jacobi and Fallows [27] explore on a single
article the Comet architecture and Bayeux protocol.

Bibliography

[1] Jesse James Garrett. Ajax: A new approach to web applica-
tions, 2005. http://www.adaptivepath.com/publications/essays/

archives/000385.php.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
http/1.1. Internet RFCs, 1999. http://tools.ietf.org/html/

rfc2616.

[3] E.L. Specification. Standard ecma-262. ECMA Standardizing
Information and Communication Systems, 3, 1999.

[4] A. Le Hors, P. Le Hegaret, G. Nicol, J. Robie, M. Champion, and
S. Byrne. Document object model (dom) level 2 core specification
version 1.0. W3C Recommendation, 13, 2000.

[5] Alex Russell. Comet: low latency data for the browser, 2006.
http://alex.dojotoolkit.org/?p=545.

[6] Rohit Khare. Beyond ajax: Accelerating web applications with
real-time event notification, 8 2005. http://www.knownow.com/

products/docs/whitepapers/KN-Beyond-AJAX.pdf.

[7] Wikipedia page for comet. http://en.wikipedia.org/wiki/Comet_
%28programming%29.

[8] Greg Wilkins. Jetty 6.0 continuations - ajax ready!, 2005. http:

//web.archive.org/web/20060425031613/http://www.mortbay.

com/MB/log/gregw/?permalink=Jetty6Continuations.html.

125

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://alex.dojotoolkit.org/?p=545
http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://en.wikipedia.org/wiki/Comet_%28programming%29
http://en.wikipedia.org/wiki/Comet_%28programming%29
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html
http://web.archive.org/web/20060425031613/http://www.mortbay.com/MB/log/gregw/?permalink=Jetty6Continuations.html

126 BIBLIOGRAPHY

[9] Jean-Francois Arcand. New adventures in comet: polling, long
polling or http streaming with ajax. which one to choose?,
2007. http://weblogs.java.net/blog/jfarcand/archive/2007/05/

new_adventures.html.

[10] Giuseppe Naccarato. Introducing nonblocking sockets, 2002.
http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html.

[11] Nuno Santos. Building highly scalable servers with java nio, 2004.
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html.

[12] Greg Wilkins Alex Russel, David Davis and Mark Nesbitt.
Bayeux: A json protocol for publish/subscribe event delivery,
2007. http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.

html.

[13] Web apps 1 / html 5, 2007. Server sent events specifica-
tion http://www.whatwg.org/specs/web-apps/current-work/

#server-sent-events.

[14] Jean-Francois Arcand. Grizzly part iii: Asynchronous request
processing (arp), 2006. http://weblogs.java.net/blog/jfarcand/

archive/2006/02/grizzly_part_ii.html.

[15] Jean-Francois Arcand. Grizzly: An http listener using java
technology nio, 2005. http://weblogs.java.net/blog/jfarcand/

archive/2005/06/grizzly_an_http.html.

[16] Http streaming. http://ajaxpatterns.org/HTTP_Streaming.

[17] Youri op’t Roodt. The effect of ajax on performance and usability
in web environments, 8 2006. http://homepages.cwi.nl/~paulk/

thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf.

[18] Jean-Francois Arcand. Can a grizzly run faster than a coyote?,
2006. http://weblogs.java.net/blog/jfarcand/archive/2006/03/

can_a_grizzly_r.html.

[19] Michael Mahemoff. 210 ajax frameworks and count-
ing. ajaxian.com, 2007. http://ajaxian.com/archives/

210-ajax-frameworks-and-counting.

http://weblogs.java.net/blog/jfarcand/archive/2007/05/new_adventures.html
http://weblogs.java.net/blog/jfarcand/archive/2007/05/new_adventures.html
http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://www.whatwg.org/specs/web-apps/current-work/#server-sent-events
http://www.whatwg.org/specs/web-apps/current-work/#server-sent-events
http://weblogs.java.net/blog/jfarcand/archive/2006/02/grizzly_part_ii.html
http://weblogs.java.net/blog/jfarcand/archive/2006/02/grizzly_part_ii.html
http://weblogs.java.net/blog/jfarcand/archive/2005/06/grizzly_an_http.html
http://weblogs.java.net/blog/jfarcand/archive/2005/06/grizzly_an_http.html
http://ajaxpatterns.org/HTTP_Streaming
http://homepages.cwi.nl/~paulk/thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf
http://homepages.cwi.nl/~paulk/thesesMasterSoftwareEngineering/2006/YouriOpTRoodt.pdf
http://weblogs.java.net/blog/jfarcand/archive/2006/03/can_a_grizzly_r.html
http://weblogs.java.net/blog/jfarcand/archive/2006/03/can_a_grizzly_r.html
http://ajaxian.com/archives/210-ajax-frameworks-and-counting
http://ajaxian.com/archives/210-ajax-frameworks-and-counting

BIBLIOGRAPHY 127

[20] Just van den Broecke. Pushlets - whitepaper, 8 2002. http:

//www.pushlets.com/doc/whitepaper-all.html.

[21] Dojo toolkit. http://en.wikipedia.org/wiki/Dojo_Toolkit.

[22] Alex Russell. Cometd, bayeux, and why they’re different, 2006.
http://alex.dojotoolkit.org/?p=573.

[23] Aaron Weiss. Webos: say goodbye to desktop applications, net-
worker 9, 4 (dec. 2005). netWorker, 9(4):18–26, 2005.

[24] John Stamey and Trent Richardson. Middleware development
with ajax. J. Comput. Small Coll., 22(2):281–287, 2006.

[25] Ali Mesbah and Arie van Deursen. An architectural style for ajax.
wicsa, 0:9, 2007.

[26] R. Khare and RN Taylor. Extending the representational state
transfer (rest) architectural style for decentralized systems. Soft-
ware Engineering, 2004. ICSE 2004. Proceedings. 26th Interna-
tional Conference on, pages 428–437, 2004.

[27] Jonas Jacobi and John Fallows. Enterprise comet: Awaken the
grizzly!, 2006. http://java.sys-con.com/read/327914_1.htm.

http://www.pushlets.com/doc/whitepaper-all.html
http://www.pushlets.com/doc/whitepaper-all.html
http://en.wikipedia.org/wiki/Dojo_Toolkit
http://alex.dojotoolkit.org/?p=573
http://java.sys-con.com/read/327914_1.htm

128 BIBLIOGRAPHY

Chapter 5

Job Self-Management in
Grid

Marta Garcia Gasulla and Julita Corbalan

Abstract

Grid computing is growing as a competitive distributed computing
environment. In this chapter we want to focus on a specific topic of
Grid computing, the Job management, and specially in environments
that provide self-management of jobs.

The interest and importance of self-management is growing as an
alternative to centralized schemes. Its point is that it offers a solution
to the scalability problems inherent to Grid computing. Opposed it
raises other problems such as, how to provide fault tolerance or how to
manage the lack of a centralized control. The purpose of this chapter
is to discuss the solutions to these problems that have been proposed
from different perspectives.

With the first section about user level APIs we want to present
the standardization efforts that Grid-related communities are doing.
Besides, we aim to provide the reader a general view of the concepts
and most usual requirements related to job management in Grid com-
puting.

129

130 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

In the next sections we are going to describe the different architec-
tures that are being proposed to provide job self-management.

We are going to devote a section to Service Level Agreements (SLA)
since this is evolving as the future trend to guarantee a Quality of Ser-
vice in Grid environments. Under this section we will explain mostly
the SLA standardized by the OGF and other specific examples where
SLAs are used.

5.1 Introduction

Grid computing was born due to the conjunction of several facts: the
existence of computing centers with resources distributed around the
world, the proliferation of personal computers with a high percentage
of idle time that were wasting computing cycles, and the sharing phi-
losophy in the research world, predisposed to share knowledge that
now wanted to share not only huge amounts of data but also comput-
ing resources.

Since then, Grid computing has been evolving as a promising dis-
tributed computing environment. Those behind this flourishing are
the organizations that are trying to define standards (like the Open
Grid Forum), the academic world addressing its research towards this
field and the business that have developed or adapted commercial ap-
plications for the Grid.

Because of the importance of the standardization efforts in the
evolution and adoption of Grid computing, we will devote a section
of this chapter to explain and compare the several projects that try
or tried to define standards for Grid, specially for the user level API’s
and Job Management.

The field of Grid computing has opened a lot of research areas that
go from network topics, to security issues, including job scheduling or
distributed data management and many others. In this chapter we will
approach only one of these topics, the problem of Job Management
under Grid environments.

The matter of Job Management is not a topic that was born with
Grid computing, its origins come from cluster computing where jobs
need to be scheduled or monitored when running in the clusters. But
while in cluster computing the research efforts were mainly dedicated

5.1. INTRODUCTION 131

to design scheduling algorithms to obtain the most profit from the
computing power of clusters, within Grid computing Job Management
is a topic that has gained a lot of importance. The increase in the
relevance of Job Management can be explained by the increase in the
number of functions it is responsible of.

The responsibilities of a Job Manager can be summarized in one
sentence: To accompany the job since it is created until it dies. To be
a bit more explicit, its main functions include: to schedule, monitor,
migrate and control the job during its life cycle. If we consider that
the number of jobs running on a Grid can not be limited, that means
we have to approximate it to infinite because if we try to limit the
number of jobs that can exist in a Grid environment sooner or later
this limit will be overstepped and the Job Manager will get outdated.
Therefor, the Job Manager is not a trivial service and the details of
its design, architecture, implementation and other challenges need to
be studied carefully.

The most evident properties that are desirable for a Job Manager
are scalability, transparency, good performance and last but not least
not to overload the system, since we want to spend the computational
resources on executing a lot of jobs and not wasting them into manag-
ing a few of them. To achieve this becomes very important to choose
a suitable architecture when designing a Job Manager for a Grid en-
vironment.

If there is something that the community working in distributed
computing has for certain is that centralized services are not scalable.
From this knowledge the autonomic computing approach is gaining
ground, and why not to apply it to the Job Management field too?
From the sum of these two concepts we get the Job self-management.

The main distinctive idea of the Job Self-Management is that its
goal will be always to obtain the best for the Job, unlike other man-
agers that are designed to obtain the most of the system, or what
is the same to use as much efficiently as possible the computing re-
sources available but sometimes at the expense of the performance of
some Jobs.

An other concept that was not present in cluster computing and
raises with Grid computing is the Quality of Service when executing a
Job, how to ensure it, and how to evaluate if it is achieved or not. The
answer to these questions is three letters: SLA, or what is the same

132 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

Service Level Agreements.
Service Level Agreements have produced a lot of literature the last

years, the reason of its popularity can be explained by the change
in the way computer resources are accessed. In the past, computer
resources where owned by a company, a research center or a private
person. Nowadays with the expansion of Grid, computing resources
are owned by big companies, or computing centers, and anybody can
hire computing services from them, what is more, most of the time
paying or with some kind of previous agreement. In this scenario is
easy to see the importance of the existence of a formal agreement,
standardized, flexible and robust to be used by the parts that are
negotiating with computing services.

5.2 User Level API’s and its Standardiza-
tion efforts

If we look for a unified definition of Grid computing probably we will
not find one in which everybody agrees, but there is a concept that
appears in all the definitions proposed: heterogeneous resources. This
is the most attractive attribute of Grid computing and at the same
time when trying to enable Grid computing for everyone it is the most
important problem, or shall we say the most interesting challenge?

This is the reason why so many efforts have been dedicated to define
an Application Programming Interface (API) for Grid environments.
In Figure 5.1 a very general Grid architecture is shown so that the
API and the other elements can be easily situated and identified.

There is a large number of projects and products that try to solve
the problem of providing a user friendly API that enables jobs to
easily access the Grid. From these projects one can find a wide variety
regarding the field, the development stage or even the purpose.

A lot of these projects originate from the Open Grid Forum [17], a
community that includes professionals of both industry and research
areas, whose main goal is to enable Grid technology for research and
business environments. They focus their effort mainly in developing
open standards and specifications for Grid Computing. OGF comes
from the fusion of two older Grid-related organizations: the Global
Grid Forum (GGF) and the Enterprise Grid Alliance (EGA).

5.2. USER LEVEL API’S AND ITS STANDARDIZATION EFFORTS133

Figure 5.1: General Grid Architecture

The OGF deals with a huge number of topics, and is organized
in research or working groups, two of these groups are of interest in
this section: the Distributed Resource Management Application API
Work Group (DRMAA-WG) [23] [28] and the Simple API for Grid
Applications Research Group (SAGA-RG)[22].

The main goal of DRMAA-WG is to develop the specification of
an API to enable job submission and job monitoring in a distributed
resource management (DRM) environment. The extent of the speci-
fication is the high level functionality necessary for an application or
user to manage jobs submitted to a DRM. They offer a very basic set
of operations to create, monitor, control (start, stop, restart, kill) and
retrieve the status of a job.

The SAGA group is close to DRMAA one, in the sense that they
share the same objective, but differ in the way to achieve it. The
SAGA objective is more ambitious and somehow it is built on the
DRMAA experience. They aim to develop a much more flexible and
complex API than DRMAA. Besides this, the SAGA specification is
still being discussed, and the DRMAA’s was finished in 2004.

Although the SAGA specification is still being discussed, there are
several projects that support it, the Grid Application Toolkit (GAT)
[2] is probably the most important one. GAT is a layer from the
GridLab [3] [30] project. GridLab is an European project that has

134 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

developed an environment to enable developers to exploit all the pos-
sibilities and power of the Grid. It is divided in different layers. Among
them the Grid Application Toolkit (GAT) is the layer that provides
access to the different Grid Services, as can be seen in Figure 5.2.
The main properties of the GAT API are the ease of use, and its mal-
leability, since it supports different programming languages and Grid
middlewares. It also enables the same application to run in a variety
of systems (from a laptop to a HPC resource).

Figure 5.2: Layers that form the GAT API

A part from GAT there is an other project that has supported
SAGA, the Commodity Grid Toolkit (CoG) [34] that is also part of
the Globus Alliance. The goal of this project is to enable commod-
ity technologies for the Grid so that applications can have both the
advantages of being developed in a commodity environment and Grid
services, as shown in Figure 5.3. Nowadays you can find the Java CoG
Kit, Python CoG Kit and Perl CoG Kit [25] in the web site of the
Globus Alliance.

All the projects we have been talking until now provide API’s for
Grid-aware applications, which means that the applications must be
modified or already implemented to be executed on the Grid. But
there are other levels of API’s that aim to provide access to the Grid
for Grid-unaware applications, that is that unmodified applications
can be executed on the Grid. In the schema shown in Figure 5.4 is
represented the difference between the two kinds of API’s for Grid.

One of the projects that offer an API for Grid-unaware applications

5.2. USER LEVEL API’S AND ITS STANDARDIZATION EFFORTS135

Figure 5.3: Overview of CoG Kits situation in the Grid

is Ibis [33], a Grid programming environment based in Java, and more
specifically one of the components of Ibis: the Ibis Portability Layer
(IPL). Ibis provides portability among a wide range of Grid platforms
thanks to java’s main property; furthermore it defines a high level
communication API that hides Grid properties from the application
and at the same time fit’s in the java’s object model.

In this category of projects, whose effort is to enable Grid-unaware
applications to run on the Grid, can be found also Grid Superscalar

Figure 5.4: Grid-aware and Grid-unaware APIs

136 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

[7] and ProActive [8]. Grid Superscalar is more a programming envi-
ronment to enable easily Grid-unaware applications to run in the Grid
than a simple API. Proactive is a Java library that provides a simple
API to isolate the underlying framework, which can be a distributed
computing on a LAN, on a cluster of PCs, or on Internet Grids.

To end with there are two names that must appear when talking
about Grid at any level, Globus [4] [18] and Condor [12], they are not
literally a user-level API but an environment that embraces all the
layers of the Grid picture.

Globus has been the reference product when talking about solu-
tions for the Grid. It is a complete open source software that covers
all the needs when working in a Grid environment. Because of its
early appearance it has emerged as the standard de facto. The Globus
Toolkit consists of a number of components that can be used together
or separately combined with others to provide solutions to a wide
range of contexts. The main potential of the Globus Toolkit is that its
components are decoupled enough to offer their functionalities individ-
ually but at the same time Globus itself offers a complete independent
product. As we will explain in Section 5.3 Globus presents a layered
architecture hence each layer provides it’s own API, as can be seen in
Figure 5.5.

Condor....
In this sections we have presented different API’s that are applied

at different levels, an important concept to have in mind is that as
each one is addressed to a different degree they are not incompatible.
Moreover is usual to find several of this paradigms working together, as
an example we can find that Grid Superscalar works on top of SAGA
API, and at the same time SAGA is implemented by GAT [31].

5.3 Job Management Architectures

There are several characteristics of Grid Computing that have to be
taken into account when developing any kind of software tailored to
this environment such as heterogeneity, transparency, scalability, se-
curity.

To ensure all these characteristics, or at least to try to achieve the
most of them it is very important to define the architecture that will

5.3. JOB MANAGEMENT ARCHITECTURES 137

Figure 5.5: API’s in the Globus Layered model

be used from the beginning, as on this decision depends the success in
the achievement of the desired properties.

The first as can be no other is Globus [18] a complete Grid product
that covers all the areas of a Grid environment. It has a modular archi-
tecture that lets use its different components separately combined with
other pieces of software or together to obtain a complete framework
for Grid environments.

The components of the Globus Toolkit are organized following the
Layered Grid Architecture, in Figure 5.6 is shown an overview of the
Globus layered architecture with an analogy to the Internet Architec-
ture, followed by a brief explanation of each layer.

The Fabric Layer comprises the resources that are administrated
by the Grid, computing, network or storage resources.

The connectivity Layer provides the communication protocols and
handles the security issues.

The Resource layer is build on top of the connectivity layer and

138 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

Figure 5.6: Architecture of the Globus Toolkit Layered model

defines the protocols and APIs to access the resources.

The Collective layer manages the services that are not associated
to a single resource but are global, distributed or collective.

The Applications layer lies on top of all the others it comprises the
user applications; these applications call the services of the other
layers through the defined APIs.

Each of these layers is formed by three elements, the API and SDK,
the protocols and the implementation and follow the principles of the
Hourglass Model [19]. The hourglass model is represented in Figure
5.7 and is based in the IP hourglass model that represents a variety of
applications (on top), a single protocol (IP, in the middle) and a wide
range of platforms (on the bottom).

Grid Resources Allocation and Management (GRAM) is the com-
ponent of Globus that belongs to the Resource Layer and provides an
interface to submit, monitor and cancel jobs. It is not a scheduler but
an interface to provide access to a different range of schedulers such
as: PBS, Condor, LSF or LoadLeveler. The internal architecture of
GRAM is shown in Figure 5.8, it is formed by three tiers; the client

5.3. JOB MANAGEMENT ARCHITECTURES 139

Figure 5.7: The Hourglass Model

tier is from where a client can submit a job to GRAM and check its
status.

Figure 5.8: Internal Architecture of GRAM

Internally, GRAM consists of a gatekeeper and a job manger. The
gatekeeper is responsible for authentication with the client. After this
initial security check, it starts up a job manager that interacts there-
after with the client based on the GRAM protocol. Each job submitted
by a client to the same GRAM will start its own job manager. Once
the job manager is activated, it handles the communication between
the client and the back-end system on which the job is executed.

The second in order of importance is Condor [32] a project that
aims to develop a management system to support high-throughput
Computing (HTC) in distributed environments. Users submit their
serial or parallel jobs to Condor, Condor places them into a queue,
chooses when and where to run the jobs based upon a policy, care-

140 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

fully monitors their progress, and ultimately informs the user upon
completion.

From the union of these two giants appears Condor-G [21] a dis-
tributed computing framework. It gets the Gird experience of Globus,
and the management of distributed computing from Condor. In Figure
5.9 is shown the architecture of Condor-G, The submission machine is
where the user submits the Job, here the Condor-G scheduler sends
the petition to the Grid Manager that uses GASS (Global Access to
Secondary Storage) component of Globus, that provides a transparent
remote execution of jobs without the user taking care of redirecting
the I/O and copying the executable.

Figure 5.9: Condor-G Architecture

When the scheduling decision is taken the job is submitted to the
execution site using GRAM that will be in charge of monitoring and
possible needed recoveries of the job. All the security issues are han-
dled by GSI (Grid Security Infrastructure of Globus)

With the Portable Batch Scheduler Professional Edition (PBS Pro)

5.3. JOB MANAGEMENT ARCHITECTURES 141

[27] we can find also a fully featured software for job management in
Grid. PBS includes novel approaches to resource management, such
as the extraction of scheduling policy into a single separable, com-
pletely customizable module. The PBS allows the implementation of
policies for the resources sites, such as what types of resources to use
or how much a resource can be used by a job. It also provides ad-
vanced reservations at user level, which means that a user can request
a reservation for a specific start time and duration. The interaction
between the components of the PBS is a client-server model.

Application Level Scheduler better know by AppLeS [9] is a project
that develops a methodology for adaptive application scheduling. This
scheduler is targeted to multi-user distributed heterogeneous environ-
ments (like a Grid). Each application is scheduled looking for its bet-
ter performance. In Figure 5.10 is shown the methodology followed by
AppLeS to schedule a job.

Figure 5.10: Scheduling process in AppLeS

An AppLeS agent is organized in terms of four subsystems and
a single active agent called the Coordinator. The four subsystems
are the Resource Selector, which chooses and filters different resource
combinations for the application’s execution, the Planner, which gen-
erates a resource-dependent schedule for a given resource combination,
the Performance Estimator, which generates a performance estimate
for candidate schedules according to the user’s performance metric,
and the Actuator, which implements the best schedule on the target
resource management system(s).

Figure 5.11 depicts the Coordinator and these four subsystems.
The information Pool contains Application-specific, system-specific,

142 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

and dynamic information used by the subsystems to take decisions.

Figure 5.11: AppLeS Agent Architecture

Apples Parameter Sweep Template (APST) [11] is targeted to Pa-
rameter Sweep Applications 1, that are an ideal class applications for
the Grid.

Parameter Sweep Applications are independent but usually they
share big input Files and produce big output files; these are the main
characteristics to be taken into account when scheduling these kind of
applications. The user/application provides the information relative to
the job to the AppLeS agent, from the combination of this information
and the current system state the job will be scheduled.

The architecture of APST is shown in Figure 5.12 at the bottom of
the picture are the resources available on the Grid, that can be accessed

1Parameter sweep applications are a class of application in which the same code
is run multiple times using unique sets of input parameter values. This includes
varying one parameter over a range of values or varying multiple parameters over
a large multidimensional space

5.3. JOB MANAGEMENT ARCHITECTURES 143

Figure 5.12: APST Architecture [10]

via the Grid services. The scheduler is the central component which
takes all the decisions of resource allocation, the data manager and the
compute manager help the scheduler by providing information that
they obtain from the Grid services. The metadata manager facilitates
the scheduler published information about available resources. The
scheduler also has a predictor that compiles information from those
three sources and computes forecasts.

Under the GRIA project [16] an architecture for Grid have been
proposed [26], the differentiation of this architecture is that they aim
to provide QoS, to enable a commercial Grid. The architecture pro-
posed can be seen in Figure 5.13, it extends the Globus architecture
to provide QoS aspects in the resource management model.

GridLab is an European project whose primary aim is to provide
users and application developers with a simple and robust environ-
ment enabling them to produce applications that can exploit the full
power and possibilities of the Grid [3]. As can be seen in Figure 5.14

144 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

Figure 5.13: GRIA project architecture for QoS

GridLab components can be divided in layers, on the highest layer
(called User Space) there is GAT (Grid Application Toolkit), GAT
is a high level API for Grid Environments. The middleware layer is
called Capability Space and contains the Service layer where are lo-
cated the Grid services such as GRMS (Grid Resource Management
Service)[24], Data Access and Management (Grid Services for data
management and access), GAS (Grid Authorization Service), iGrid
(GridLab Information Services), Delphoi (Grid Network Monitoring
and Performance Prediction Service), Visualization (Grid Data and
Visualization Services).

5.4 Service Level Agreements (SLA)

A common requirement in distributed computing systems such as
Grids is to negotiate access to, and manage, resources that exist within
different administrative domains than the requester. Acquiring access
to these remote resources is complicated by the competing needs of
the client and the resource owner.

The clients want to know what is happening in the resources and

5.4. SERVICE LEVEL AGREEMENTS (SLA) 145

Figure 5.14: GridLab project architecture

to be sure of the level and type of service offered by the resource. The
owner wants to keep the control of the resource and its usage.

From these requirements the Service Level Agreements (SLAs) are
emerging as the standard concept by which work on the Grid can be
arranged and Quality of Service ensured.

The following examples capture some of the diverse resource man-
agement situations that can arise where a SLA would be needed:

Task submission in which the resource accepts responsibility to per-
form a specified task, for example, execute a program, move a
file, or perform a database lookup. This is the most basic type of
resource management agreement, in which the provider simply
commits to perform the agreed-upon function without necessar-
ily committing to when the task will start and finish, how many
additional tasks the resource would be able to take on for the
user, how many other tasks it might take on in the future, and
so forth.

Workload management in which the task submission scenario de-
scribed above is extended by provisioning tasks to provide a
specified level of capability, such as processors on a computer,

146 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

threads or memory in a server, bandwidth on a network, or disk
space on a storage system. This extension enables the appli-
cation manager to control not only what task will be done but
also aspects of how tasks are performed. Levels of capability
might be expressed as maximum task turnaround time, average
turnaround time, task throughput, and so forth. This case can
relate one manager interaction to a set of application or resource
interactions.

Advanced reservations in which resource capability is made avail-
able at a specified point in time, and for a specified duration.
This type of resource management can be particularly impor-
tant for so called on line applications, such as teleoperation.

Coscheduling in which a set of resources is made available simulta-
neously by coordinating advanced reservation agreements across
the required resources.

Resource brokering scenarios in which a broker service acts as an
intermediary to a set of resource capabilities and directs tasks to
appropriate resources based on broker specific policy. One such
policy is to maximize total job throughput.

Grid-based resource management systems generally cannot create
quality of-service agreements without cooperation from the resource
being managed. The reason is that a resource is typically not dedicated
to a specific user community, or virtual organization (VO).

Based on the Service Negotiation and Access Protocol (SNAP) [15]
the Service Level Agreements can be classified in three categories:

Task service-level agreements (TSLAs) that represent a commit-
ment to perform an activity or task with embedded resource re-
quirements. For example, a TSLA is created by submitting a
job description to a queuing system. The TSLA characterizes a
task in terms of its service steps and resource requirements.

Resource service-level agreements (RSLAs) that represent a com-
mitment to provide a resource when claimed by a subsequent
SLA. An RSLA might be negotiated without specifying the activ-
ity for which the resource will be used. For example, an advance

5.4. SERVICE LEVEL AGREEMENTS (SLA) 147

reservation takes the form of an RSLA. The RSLA characterizes
a resource in terms of its abstract service capabilities.

Binding service-level agreements (BSLAs) that represent a com-
mitment to apply a resource to an existing task. For example,
an RSLA promising network bandwidth might be applied to a
particular TCP socket, or a RSLA promising parallel computer
nodes might be applied to a particular job task. The BSLA
associates a task, defined by its TSLA with the RSLA and the
resource capabilities that should be met by exploiting the RSLA.

5.4.1 Standardization

The power of agreement based resource management lies in its ability
to enable resources and users from different administrative domains to
combine resources in such a way as to provide well defined behaviors.
As such, agreements are fundamental to the Grid vision of deliver-
ing virtualized services to a collaboration that spans organizational
boundaries. However, without well-defined, interoperable protocols
for negotiating, establishing, and managing agreements, the ability
to visualize resources across organizations will be greatly impeded.
To this end, the Grid Resource Allocation and Agreement Protocol
Working Group (GRAAP-WG) in the Global Grid Forum (GGF) [5]
is defining a standard set of agreement protocols.

The GGF structure considers a three-layered agreement model con-
sisting of the following.

• A service layer that provides domain-dependent interfaces to
that actual function of the service. The service layer has the
implementation-specific mechanisms for enforcing the terms of
an agreement.

• An agreement layer that provides management (i.e. creation
and destruction) and status monitoring of agreements.

• A negotiation layer which implements a term negotiation pro-
tocol that provides for the exchange of agreement terms.

The GRAAP-WG of the OGF is working on the definition of a
standard Web Services Agreement (WS-Agreement) [6], to address

148 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

the agreement layer. The first version was presented in 2004. A WS-
Agreement is a XML-based document containing descriptions of the
functional and non-functional properties of a service oriented applica-
tion. Its structure can be seen in Figure 5.15. Specifications for other
layers will be defined in the future.

Figure 5.15: Web Service Agreement (ws-agreement) Structure

According to the first specification of the WS-Agreement the states
of an agreement can be Pending, Pending And Terminating, Observed,
Observed And Terminating, Rejected, Complete and Terminated and
the transitions between them are shown in Figure 5.16.

There have been proposed extensions to the ws-Agreement, like the
one proposed from the university of Trento [1]. Their proposal can be
divided in two. The first idea consists in anticipating violations, while
the second is devoted to the run-time renegotiation. They base their
study in a formal analysis of the Agreements by a finite state automata,
and they provide a set of rules that tie together the agreement terms
and the life-cycle of an agreement.

Their proposal consists in adding some terms to the WS-Agreement
that contains the renegotiation possibilities. Providing renegotiation
permits that in case an Agreement has not been accomplished instead

5.4. SERVICE LEVEL AGREEMENTS (SLA) 149

Figure 5.16: Web Service Agreement (ws-agreement) States

of aborting it, and the need of creating a new one, the Agreement can
be renegotiated.

In a later article [20] they expand their proposal to anticipate viola-
tions, and for this they add a new state of Warning when an agreement
is close to being violated, then renegotiation can be done.

5.4.2 SLA’s in use

Service Negotiation and Acquisition Protocol (SNAP) [15] is a model
and protocol for managing the process of negotiating access to, and
use of, resources in a distributed system. Defines a general framework
within which reservation, acquisition, task submission, and binding
of tasks to resources can be expressed for any resource in a uniform
fashion it is not focused in a particular type of resource (e.g. CPU’s,
Networks).

The states of an Agreement in the SNAP protocol are shown in
Figure 5.17. Mainly there are four states the initial one (S1) when the
resources are being requested and the Agreement negotiated. When
the task has been assigned to a resource it changes to the scheduled
state (S2). As soon as the resource is being utilized the state changes
to S3, and finally when the resource is released either by successful
termination or any other reason, the state is S4.

The EPSRC project Service Level Agreement Based Scheduling

150 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

Figure 5.17: States of an Agreement in the SNAP protocol

Heuristics have a wide work on the field, they have proposed an ex-
tension to WS-Agreements to include functions in the terms of the
Agreement rather than constant values or ranges to provide more flex-
ibility, that will result in less violated Agreements and a better per-
formance of the negotiation process [29].

The research they are working on aims to provide a flexible and
efficient scheduling infrastructure based in Service Level Agreements,
they position their work opposite the advanced reservations because
these ones are too rigid. The architecture they proposed is formed by
a centralized coordinator that receives all the petitions and negotiate
the SLA with the resources[35] .

In the University College London they propose SLAng, A Language
for Defining Service Level Agreements. SLAng is a language for defin-
ing QoS properties in XML. It is not Grid tailored and is based in the
definition of two levels of Agreements, horizontal and vertical. Hor-
izontal Agreements are those binding different parties providing the
same kind of service and Vertical Agreements are contracted between
parties that ones is above the other infrastructure.

5.4. SERVICE LEVEL AGREEMENTS (SLA) 151

The requirements they aim to achieve by the definition of SLAng
are the following:

Parametrization Each SLA includes a set of parameters; these pa-
rameters describe quantitatively a service that have been stated
previously. A set of parameters of a particular kind of SLA pro-
vides a qualitative description of a service.

Compositionality Service providers should be able to compose SLAs
in order to issue offers of services that can be aggregated or cas-
caded. An SLA language has to enable composition of services.

Validation An SLA must be validated before being accepted in terms
of its syntax and consistency. Furthermore, validity should be
verified as a result of a composition.

Monitoring Ideally, parties should be able to automatically monitor
the terms of the Agreement, SLAs should therefore provide the
basis for the derivation and installation of automated monitors
that report extents with which service levels are being met.

Enforcement Once service levels are agreed, network routers, database
management systems, middleware and web servers can be ex-
tended to enforce service levels in an automated manner by using
techniques such as caching, replication, clustering and farming.

SLAng defines that an SLA to be legally binding has to be embed-
ded in a SLA contract. A SLA contract is formed by one or more SLAs
plus the names of the two juridical persons contracting the agreement,
and additionally a third trusted party, with all the digital signatures.
An SLA is formed by three parts, the Endpoint description contains
the information of the service providers and consumers, the contractual
statements that are not the terms referents to the requested service
but to the agreement itself and finally in the SLS can be found the
Terms of the Agreement. The structure of a SLA embedded in a SLA
contract is shown in Figure 5.18.

152 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

Figure 5.18: A SLAng contract Structure

5.5 Conclusions and Future Trends

As we have seen in the previous sections, there are a lot of projects that
put research efforts in the Job Management for Grid Computing. The
level of maturity they have is very heterogeneous, some are a finished
product and other ones are just being specified. Therefor we can say
that Grid is not the future nor the present of Distributed computing,
it is both things at the same time the present and the future.

To understand the point where Grid computing is now, we can
look for the similarity with the Internet: it was born in a lab, later
on it was expanded all over the world and anyone could have access
to it just with a modem and a personal computer, but it took some
years since it was accessible until it became popular and almost anyone
access it every day. Grid Computing is nowadays a reality, anyone can
have access to it but it is mostly known in the academic domain. In
the next years Grid computing will gain popularity, and if the trend
continues not in a far future Grid computing will be as popular as
Internet is these days.

But for the Grid Computing to achieve this level of maturity there
is still work to do. Corresponds to the business world to enable appli-
cations for the Grid and give it a chance by supporting its expansion.
On the other hand there is a lot of research to be done in the Grid

5.5. CONCLUSIONS AND FUTURE TRENDS 153

Computing area, the academic world is responsible for enabling the
Grid to be accessible to everybody, to become reliable, and of course
rentable in terms of performance.

But among all these, maybe the most important task that should
be done is standardization. The standardization process is not always
done by dedicated organizations that impose a standard. Sometimes
is simply that everybody comes together to use the same, when this
happens is because whatever it is, it has the characteristics that were
demanded in that moment. In this case it is still the responsibility of
the standardizing organizations to formalize it and spread it use.

In any of these cases the standardization organizations have an
important role in the expansion of Grid computing and its popularity.

Focusing in Job Management in Grid Computing, the topic of this
chapter, we have devoted the different sections to the areas that in
our opinion are decisive for the evolution of Grid computing from the
research labs to the public domain. First the Application Program-
ming Interfaces at user level, because as soon as there is a strong,
reliable and standardized API, more applications could be enabled for
the Grid and it will be easier for programmers to develop Grid-aware
applications. As we have seen a lot of effort has been put in this di-
rection, but the proposed APIs are not enough wide to cover all the
needs and are still not enough flexible, it is the standardization orga-
nizations duty to propose an API with all these properties. But not
only to propose it, furthermore they have to listen to the community,
and adapt the proposal to their needs and suggestions. Beyond this
only time can settle down and positively test a standard.

Of course the architecture of Grid environments is decisive to de-
velop a reliable, profitable and flexible Grid framework. Unlike it can
seem, the goal here is not to achieve a standard and all the solutions
to converge into the same approach. But to offer a variety of solutions
that can cover all the different needs. Although at first one can think
that everywhere the requirements of a Grid framework are the same,
depending on the environment one or another gain more importance.
The academic world is the responsible for researching in the different
options and evaluate for which environment is better each one. Offer-
ing a wide range of approaches so that all the different needs can be
satisfied.

In order to obtain a place in the business world is essential for

154 CHAPTER 5. JOB SELF-MANAGEMENT IN GRID

the Grid to ensure a Quality of Service. Furthermore empowering the
business applications for the Grid is the only way to give it significance
and force. The QoS in Grid computing is translated to SLA, as this
is the instrument to represent the requirements and agreements about
the services provided. Even though there is a lot of literature about
SLA written already, a further effort have to be made to converge to
a unique model. Again the standardization process is needed here.
But not only is necessary a definition of the contents of a SLA also
to specify a protocol of negotiation. As explained in Section 5.3 and
Figure 5.7 the hourglass model would be the ideal to achieve here.

Concluding, Grid Computing is already a reality and anyone can
access it with the products that exist nowadays. Despite this a lot of
work should be done by the researching community and the business
parties to make it become a common environment for the general pub-
lic. In some areas the need is to converge to a unique solution and in
some others to offer a wide range of possibilities. But the key aspect
is that the interest in Grid is not lost, and looking at the amount of
literature that is being produced about it there is no danger at all.
Beyond this the natural process of research and evolution will drive to
the maturity of Grid Computing.

Bibliography

[1] Marco Aiello, Ganna Frankova, and Daniela Malfatti. What’s in
an agreement? an analysis and an extension of ws-agreement.
In International Conference on Service Oriented Computing (IC-
SOC), pages 424–436, 2005.

[2] Allen, G., K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kiel-
mann, A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke,
T. Schott, E. Seidel, and B. Ullmer. The grid application toolkit:
toward generic and easy application programming interfaces for
the grid. Proceedings of the IEEE, Vol. 93(Issue 3):pages: 534–
550, March 2005.

[3] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D.
Doulamis, Tom Goodale, Thilo Kielmann, André Merzky, Jarek
Nabrzyski, Juliusz Pukacki, Thomas Radke, Michael Russell,
Ed Seidel, John Shalf, and Ian Taylor. Enabling applications on
the grid: A gridlab overview. International Journal of High Per-
formance Computing Applications: Special Issue on Grid Com-
puting: Infrastructure and Applications, Vol. 17(Issue 4):pages:
449–466, November 2003.

[4] The Globus Alliance. http://www.globus.org/.

[5] The Grid Resource Allocation and Agreement Proto-
col Working Group (GRAAP-WG). Global Grid Forum.
https://forge.gridforum.org/projects/graap-wg.

[6] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web services agree-

155

156 BIBLIOGRAPHY

ment specification (ws-agreement). Technical report, Global Grid
Forum, May 2004.

[7] R. M. Badia, JesÃos Labarta, RaÃol Sirvent, J. M. Cela, and Ro-
geli Grima. Grid superscalar: a programming paradigm for grid
applications. In Workshop on Grid Applications and Program-
ming Tools (GGF8), June 2003.

[8] F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssiere. In-
teractive and descriptor-based deployment of object-oriented grid
applications. In The Eleventh IEEE International Symposium
on High Performance Distributed Computing (HPDC-11), pages
pages: 93–102, July 2002.

[9] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faer-
man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao,
S. Smallen, S. Spring, A. Su, and D. Zagorodnov. Adaptive com-
puting on the grid using apples, 2003.

[10] H. Casanova and F. Berman. Parameter Sweeps on the Grid with
APST. Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, April 2003.

[11] Henri Casanova, Francine Berman, Graziano Obertelli, and
Richard Wolski. The apples parameter sweep template: User-
level middleware for the grid.

[12] Condor Project High Throughput Computing.

[13] K. Czajkowski, I. Foster, and C. Kesselman. Agreement-based
resource management. In Proceedings of the IEEE, volume Vol.93,
pages Pages: 631– 643, March 2005.

[14] Karl Czajkowski, Ian Foster, Carl Kesselman, and Steven Tuecke.
Grid service level agreements: Grid resource management with
intermediaries. pages 119–134, 2004.

[15] Karl Czajkowski, Ian T. Foster, Carl Kesselman, Volker Sander,
and Steven Tuecke. Snap: A protocol for negotiating service
level agreements and coordinating resource management in dis-
tributed systems. In Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP), pages 153–183, 2002.

BIBLIOGRAPHY 157

[16] Service Oriented Collaborations for Industry and Commerce.
http://www.gria.org/.

[17] The Open Grid Forum. http://www.ogf.org/.

[18] Ian Foster. Globus toolkit version 4: Software for service-oriented
systems. IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779:pages 2–13, 2006.

[19] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of
the Grid: Enabling scalable virtual organizations. Lecture Notes
in Computer Science, 2150, 2001.

[20] Ganna Frankova, Daniela Malfatti, and Marco Aiello. Semantics
and extensions of ws-agreement. Journal of Software, pages pages:
34–42, 2006.

[21] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and
Steve Tuecke. Condor-G: A computation management agent for
multi-institutional grids. In Proceedings of the Tenth IEEE Sym-
posium on High Performance Distributed Computing (HPDC),
pages pages: 7–9, San Francisco, California, August 2001.

[22] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von
Laszewski, C. Lee, A. Merzky, H. Rajic, and J. Shalf. Saga: A sim-
ple api for grid applications - high-level application programming
on the grid. Computational Methods in Science and Technology:
special issue ”Grid Applications: New Challenges for Computa-
tional Methods”, 2005.

[23] Distributed Resource Management Application API Working
Group. http://drmaa.org/wiki.

[24] http://www.gridlab.org/WorkPackages/wp 9/. Grid(lab) re-
source management.

[25] Globus Toolkit CoG Kits. http://www.globus.org/toolkit/cog.html.

[26] Antonios Litke, Athanasios Panagakis, Anastasios D. Doulamis,
Nikolaos D. Doulamis, Theodora A. Varvarigou, and Em-
manouel A. Varvarigos. An advanced architecture for a commer-
cial grid infrastructure. In European Across Grids Conference,
pages 32–41, 2004.

158 BIBLIOGRAPHY

[27] Bill Nitzberg, Jennifer M. Schopf, and James Patton Jones. Pbs
pro: Grid computing and scheduling attributes. Grid resource
management: state of the art and future trends, pages pages: 183–
190, 2004.

[28] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, J.P. Ro-
barts, A. Haas, B. Nitzberg, and J. Tollefsrud. Distributed re-
source management application api specification 1.0. Technical
report, DRMAA Working Group-The Global Grid Forum, 2004.

[29] Rizos Sakellariou and Viktor Yarmolenko. On the flexibility of ws-
agreement for job submission. In MGC ’05: Proceedings of the 3rd
international workshop on Middleware for grid computing, pages
1–6, New York, NY, USA, 2005. ACM Press.

[30] Ed Seidel, Gabrielle Allen, Andre Merzky, and Jarek Nabrzyski.
Gridlab–a grid application toolkit and testbed. Future Generation
Computer Systems, Vol. 18(Issue 8):pages: 1143–1153, October
2002.

[31] Raul Sirvent, Andre Merzky, Rosa Badia, and Thilo Kielmann.
Grid superscalar and saga: forming a high-level and platform-
independent grid programming environment. In CoreGRID
integration workshop. Integrated Research in Grid Computing,
November 2005.

[32] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
computing in practice: the condor experience. Concurrency -
Practice and Experience, Vol. 17(Issue 2-4):323–356, 2005.

[33] R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Ja-
cobs, T. Kielmann, and H. Bal. Ibis: a flexible and efficient java-
based grid programming environment. Concurrency and Compu-
tation: Practice and Experience, Vol. 17:pages: 1079–1107, June-
July 2005.

[34] Gregor von Laszewski, Ian Foster, and Jarek Gawor. Cog kits:
a bridge between commodity distributed computing and high-
performance grids. In JAVA ’00: Proceedings of the ACM 2000
conference on Java Grande, pages pages: 97–106, New York, NY,
USA, 2000. ACM Press.

BIBLIOGRAPHY 159

[35] Viktor Yarmolenko, Rizos Sakellariou, Djamila Ouelhadj, and
Jonathan M. Garibaldi. Sla based job scheduling: A case study
on policies for negotiation with resources. In Proceedings of the
UK e-Science All Hands Meeting (AHM’2005), September 2005.

160 BIBLIOGRAPHY

List of Figures

1.1 Globus Replica Location Service scheme 14
1.2 Peer-to-Peer Replica Location Service based on Chord . 14
1.3 LFN, GUID and PFNs 16
1.4 Trie sample . 18
1.5 Multi-tier grid computing 20

2.1 Computer systems abstraction layers 54
2.2 Emulation . 55
2.3 Full virtualization . 57
2.4 z/VM . 58
2.5 Paravirtualization . 59
2.6 Xen . 60
2.7 User-mode Linux . 61
2.8 Operating System Virtualization 61
2.9 Library Virtualization 63
2.10 Application Virtualization 64
2.11 Virtualization has no limits 66

3.1 Open-loop control system bloc diagram 85
3.2 Closed-loop control system bloc diagram 86
3.3 Autonomic computing layered architecture 88
3.4 Autonomic computing life-cycle 89
3.5 States and actions . 91
3.6 Action-policy algorithm 93
3.7 Architecture of the data center 97

161

162 LIST OF FIGURES

4.1 Classic HTTP model . 109
4.2 AJAX HTTP model . 110
4.3 HTTP streaming Comet model 112
4.4 Polling connection model 116
4.5 Long-polling connection model 117
4.6 HTTP streaming connection model 118
4.7 ARP 2k file static performance 120
4.8 ARP 14k file static performance 120
4.9 ARP 954k file static performance 120
4.10 ARP maximum number of simultaneous connections

with 2s response time 121

5.1 General Grid Architecture 133
5.2 Layers that form the GAT API 134
5.3 Overview of CoG Kits situation in the Grid 135
5.4 Grid-aware and Grid-unaware APIs 135
5.5 API’s in the Globus Layered model 137
5.6 Architecture of the Globus Toolkit Layered model . . . 138
5.7 The Hourglass Model . 139
5.8 Internal Architecture of GRAM 139
5.9 Condor-G Architecture 140
5.10 Scheduling process in AppLeS 141
5.11 AppLeS Agent Architecture 142
5.12 APST Architecture [10] 143
5.13 GRIA project architecture for QoS 144
5.14 GridLab project architecture 145
5.15 Web Service Agreement (ws-agreement) Structure . . . 148
5.16 Web Service Agreement (ws-agreement) States 149
5.17 States of an Agreement in the SNAP protocol 150
5.18 A SLAng contract Structure 152

	Replica Management in the Grid
	Introduction
	Selection and location of replicas
	Replica creation
	Replica removal
	Consistency and coordination
	Other issues
	Discussion / Conclusions
	Future Trends

	Virtualization
	Introduction
	Virtualization types
	Implementation issues
	Virtualization in the real world
	Conclusions

	Self-managed policies, a survey
	Motivation
	Introduction
	Architecture
	Achieving Self-management
	Conclusion
	Future Trends

	Web Push
	Introduction
	Background
	Introduction to Comet
	Scalability issues
	Comet frameworks
	Conclusions
	Future Trends
	References / Further Reading

	Job Self-Management in Grid
	Introduction
	User Level API's and its Standardization efforts
	Job Management Architectures
	Service Level Agreements (SLA)
	Conclusions and Future Trends

