
Virtualization Support for SLA-Driven Resource Distribution within Service
Providers

Íñigo Goiri, Ferran Julià, Jorge Ejarque, Marc de Palol, Rosa M. Badia, Jordi Guitart, Jordi Torres
Barcelona Supercomputing Center and Universitat Politecnica de Catalunya

Jordi Girona 31, 08034 Barcelona, Spain
{inigo.goiri, ferran.julia, jorge.ejarque, marc.depalol, rosa.m.badia, jordi.guitart, jordi.torres}@bsc.es

Abstract

Resource management is a key challenge that service
providers must adequately face in order to ensure their
profitability. This paper describes a proof-of-concept
framework for facilitating resource management in service
providers, which allows reducing costs and at the same time
fulfilling the quality of service agreed with the customers.
This is accomplished by means of virtualization, by pro-
viding application specific virtual environments and con-
solidating them in order to achieve a better utilization of
the providers resources. In addition, our approach imple-
ments self-adaptive capabilities for dynamically distribut-
ing the providers resources among these virtual environ-
ments based on Service Level Agreements. The proposed so-
lution has been implemented as a part of the Semantically-
Enhanced Resource Allocator prototype developed within
the BREIN European project. The evaluation demonstrates
that our prototype is able to react under changing condi-
tions and avoid SLA violations by rescheduling efficiently
the resources.

1 Introduction

The great popularity achieved by Internet services in
business processes has encouraged the appearance of ser-
vice providers that rent their resources to the enterprises on
demand, providing them with a financially attractive way to
host their services. Services owners pay for the actual use of
provider’s resources, and in return, they are provided with
guarantees on resource availability and Quality of Service
(QoS), which use to be expressed in the form of a Service
Level Agreement (SLA).

In order to be profitable, service providers tend to share
their resources among multiple concurrent applications of
different customers, but at the same time they must guar-
antee that each application has always enough resources

to meet the agreed performance goals. This task is not
straight-forward, since applications typically exhibit vari-
able resource requirements along time. For this reason, it
would be desirable for the provider to implement a self-
adaptive resource management mechanism, which can dy-
namically manage the provider’s resources in the most cost-
effective way (e.g. maximizing their utilization), adapting
to the variable behavior of the applications while satisfying
the QoS agreed with the customers.

Recently, the use of virtualization has been explored
for cost reduction and easier resource management in ser-
vice providers. Virtualization allows the consolidation of
services, multiplexing them onto physical resources while
supporting isolation from other services sharing the same
physical resource, reducing in this way provider’s costs and
maintaining the integrity of the underlying resources and
the other services. Virtualization has other valuable features
for service providers. It offers the image of a dedicated and
customized machine to each user, decoupling them from the
system software of the underlying resource. In addition,
virtualization allows agile and fine-grain dynamic resource
provisioning by providing a mechanism for carefully con-
trolling how and when the resources are used, and primi-
tives for migrating a running machine from resource to re-
source if needed.

In this paper, we exploit the features of virtualization in
a new approach for facilitating service providers manage-
ment, which allows reducing costs and at the same time
fulfilling the quality of service agreed with the customers.
Our solution provides an application specific virtual envi-
ronment for each application, granting full control to the ap-
plication of its execution environment without any risks to
the underlying system or the other applications. These vir-
tual environments are created on demand, according to ap-
plication requirements such as disk space, amount of mem-
ory, number of CPUs, required software. . . , and then, they
are consolidated in the provider’s physical resources in or-
der to achieve better utilization (thus reducing costs).

In addition, our approach supports fine-grain dynamic

1



resource distribution among these virtual environments
based on Service Level Agreements in order to adapt to
changing resource requirements of the applications. Our
system guarantees to each application enough resources to
meet the agreed performance goals, and furthermore, it can
provide the virtual environments with supplementary re-
sources, since free resources are also distributed among ap-
plications depending on their priority and resource demand.
The system continuously monitors if the SLAs of the ap-
plications running in the provider are being fulfilled. If
any SLA violation is detected, an adaptation process for re-
questing more resources to the provider is started.

With our solution, service providers can take advantage
of all their resources by consolidating services. In addition,
they can benefit from easier resource management, usage
monitoring and SLA enforcement, since these tasks are im-
plemented by means of adaptive behaviors. This enables
autonomic service providers that can adapt to changes in
the environment conditions without any additional effort to
the system administrator.

The components described in this paper are part of the
Semantically-Enhanced Resource Allocator (SERA) proto-
type [5] developed within the BREIN European IST Project
[4]. BREIN aims to develop a framework to enhance busi-
ness relationships among service providers and their cus-
tomers using challenging technologies such as agents and
semantics. The SERA prototype enables resource allocation
depending on the information given by service providers
with regard to the level of preference (according to business
goals) of their customers and on the requirements of their
tasks. The allocation process is enhanced by using agents,
semantics and virtualization.

The paper is organized as follows: Section 2 presents an
overview of the SERA. Section 3 introduces our proposal
for managing virtual machines and dynamically provision-
ing resources. Section 4 presents our SLA management
strategy, including SLA monitoring and SLA enforcement.
Section 5 describes the experimental environment and the
evaluation. Section 6 presents the related work. Finally,
Section 7 presents the conclusions of the paper and the fu-
ture work.

2 SERA Overall Architecture

This section gives an overview of the architecture of the
SERA, describing the main components and their interac-
tions. Each component contains an agent and a core. The
agent wraps the core functionalities by means of a set of
behaviors which basically call methods from this core. The
agents are in charge of the communication between compo-
nents. In addition, their implicit reactiveness is used to im-
plement the self-adaptive behavior of the system, that is, be-
ing aware of the system performance and status variations,

and coordinating the reaction to these variations (e.g. reac-
tion to an SLA violation).

Figure 1. Architecture of SERA prototype

Figure 1 shows the main components of the SERA,
whose functionality is herewith described. The Client Man-
ager (CM) manages the client’s task execution by requesting
the required resources and by running jobs. In addition, it
makes decisions about what must be done when unexpected
events such as SLA violations happen.

The Semantic Scheduler (SeS) allocates resources to
each task according to its requirements, its priority and the
system status, in such a way that the clients with more prior-
ity are favored. Allocation decisions are derived with a rule
engine using semantic descriptions of tasks and physical re-
sources. These resource descriptions are automatically gen-
erated from the system properties and stored in a Semantic
Metadata Repository (SMR) when the machine boots. This
repository comes with a set of services for registering, stor-
ing and publishing the semantic descriptions.

The Resource Manager (RM) creates virtual machines
(VM) to execute clients’ tasks according to the minimum
resource allocation (CPU, memory, disk space...) given by
the SeS and the task requirements (e.g. needed software).
Once the VM is created, the RM dynamically redistributes
the remaining resources among the different tasks depend-
ing on the resource usage of each task, its priority and its
SLA status (i.e. is it being violated?). This resource redistri-
bution mechanism allows increasing the allocated resources
to a task by reducing the assignment to other tasks that are
not using them.

Finally, the Application Manager (AM) monitors the re-
source usage and the SLA parameters in order to evaluate if
an SLA is being violated. An SLA violation can be solved
by requesting more resources to the RM. If the RM cannot
provide more resources, the AM will forward the request to
the CM.

Figure 2 shows the task lifecycle in the SERA and the in-
teraction among the different components. Initially, at boot
time, every component stores its semantic description in the



SMR. An interaction starts when a task arrives at the system
and a CM is created in order to manage its execution. The
CM preselects potential nodes for running the task querying
the SMR and registers the task description. Then, it requests
a time slot to the SeS for the task (1). In this stage, the SeS
uses the metadata stored in the SMR to infer in which node
the task will be executed. At this point the SeS informs
the CM whether the task has been successfully scheduled
or canceled. When the time to execute the task arrives, the
SeS contacts with the RM in charge of the node where the
task has been allocated and requests the creation of a VM
for executing the task (2).

Semantic
Scheduler

Client Manager

Resource
Manager

Virtual
Machine

VM Monitor

Application
Manager

(1) Task Scheduling

(4
) V

M
 R

e
ad

y

(3) Create VM

(8) SLA Violation

(9) Resource Provisioning

(6
) 

E
x
e
cu

te
 J

o
b

(1
0
) 

S
LA

 F
ai

le
d

(7) Resource
Monitoring

(5) Scheduling Results

(2
) C

re
ate

 V
M

Figure 2. Task lifecycle

When the RM receives the SeS request, it creates a VM
and an AM that will monitor the SLA fulfillment for this
task (3). Once the VM is created, the SeS is informed (4)
and it forwards the message to the CM indicating the ac-
cess information to that VM (5). At this point, the CM can
submit the task to the newly created VM (6). From this mo-
ment, the task is executed in a VM which is being monitored
by the AM in order to detect SLA violations (7). If this oc-
curs, the AM requests more resources to the RM (8), trying
to solve the SLA violation locally to the node (9). This re-
quest for more resources will be performed as many times
as needed until the SLA is not violated any more or the RM
informs the AM that the requested resource increment is not
possible. In the latter case, since the SLA violation cannot
be solved locally, the AM informs the CM about this situa-
tion (10). In this case, the CM should decide to resubmit the
task with higher resource requirements or notify the client
if the resubmission fails.

This paper focuses mainly in the functionality and im-
plementation of the RM and the AM components, which are
described in the following sections. Additional description
of the other components can be found in [5].

3 Resource Manager

The Resource Manager (RM) is composed by its corre-
sponding agent and core. There is one RM instance per
physical machine in the service provider. Once the RM is
created and fully started, it waits for requests from the SeS.
When a new request arrives, the RM checks if it is possi-
ble to create a new VM with the specified features and it
informs the SeS about the success/failure of this operation.
Virtualization is our system is supported by using Xen [22].

3.1 Management of VMs lifecycle

The creation of a new VM requires the following steps:
downloading and creating the guest operating system (a De-
bian Lenny through debootstrap for this prototype), copying
extra software needed by the client in an image that will
be automatically mounted in the VM, creating home direc-
tories and swap space, setting up the whole environment,
packing it in an image, and starting the VM. Once the VM
has completely started, the guest operating system must be
booted. After this, the additional software needed by the
client must be also instantiated (if applicable). These phases
can be clearly appreciated in Figure 5, which is presented in
Section 6.

From this description, one can derive that this process
can have two bottlenecks: the network (for downloading
the whole system) and the disk (for copying applications
and creating system images, approx. 1GB of data). The
network bottleneck has been solved by creating a default
image of the system with no settings, and copying it for
each new VM. This almost eliminates the downloading time
(base system is only downloaded once and can be reused
for each new VM), but contributes to the disk bottleneck.
The disk bottleneck has been solved by adding a second
caching system that periodically copies the default image
and the images with the most commonly used software to a
cache space. Finally, the RM has only to move these images
(just an i-node change) to the final location when a new VM
is created. Using these caching techniques, the complete
creation of a VM has been reduced from up to 40 seconds
to an average time of 7 seconds. More details about the VM
creation times will be shown in Section 6.

Additionally, when a task finishes or the SeS decides that
this task should be rescheduled or canceled, the VM must
be destroyed. This includes killing the associated AM, and
the redistribution of the resources freed by this VM among
the other VMs (see Section 3.2).

3.2 Resource distribution among VMs

The RM is also responsible of distributing the providers
physical resources among the VMs. The goal is to max-



VM 1 VM 2

VM 1
+

VM 2
Usage

Surplus

Reallocation

VM 1 VM 2

100

0

100

0

VM 1
+

VM 2
Usage

Figure 3. Surplus resource distribution

imize physical resources utilization, while fulfilling the
SLAs. In order to accomplish this, the SeS provides the RM
with two parameters for each VM, namely the minimum re-
source requirements of the VM and the initial priority of
this VM, which corresponds to the priority for the service
provider of the customer executing in this VM (e.g. Gold,
Silver, etc.).

For each VM, the RM guarantees that its minimum re-
source requirements are met during the whole VM lifetime.
Surplus resources that are not allocated to any VM are dy-
namically redistributed among VMs according to their re-
source usage and the fulfillment status of the SLAs (as
shown in Figure 3). In this way resource wasting is avoided
and the applications are provided with better service.

The surplus resources are redistributed among the VMs
according to their dynamic priority. This priority initially
corresponds to the priority set by the SeS and can be dy-
namically increased by the AM to apply for more resources
if the SLA is being violated. Any dynamic priority change
induces the RM to recalculate the resource assignment of
the VMs according to the following formula (where pi is
the priority of client i) and bind the resources to the VMs.

Rassigned(i) = Rrequested(i) +
pi∑N

j=0 pj

·Rsurplus

Current implementation is able to manage CPU and
memory resources. CPU management is straight-forward
by using the Xen Scheduler credit policy. This policy al-
lows specifying the maximum amount of CPU assigned to
a VM by defining scheduling priorities. For example, in a
platform with 4 CPUs (i.e. 400% of CPU capacity) and two
VMs, one with a priority of 6 and the other with a priority
of 4, the first could take at most the 240% of CPU, while
the other could take at most the rest 160% of CPU. The
scheduling priorities can be set using the XenStat API.

On the other side, there are some limitations for dynamic
memory management using VMs. In Linux systems, the
mapping of physical memory is done at boot time. Once
the guest system has booted, if the amount of memory al-
located to the VM is reduced, the guest system adapts to
this reduction automatically. Nevertheless, when assigning
to the VM more memory than the initially detected by the
guest system, Linux does not make it available to the user.
It would be necessary to restart the guest system to make

all this memory available. In order to overcome this limita-
tion, the RM creates all the VMs with the maximum amount
of memory possible and then it reduces the amount of allo-
cated memory to the value indicated by the SeS.

4 Application Manager

The Application Manager (AM) has two main responsi-
bilities. On one side, it enables the execution of the task
into the VM created by the RM explicitly for this task. This
is done by means of a Globus Toolkit 4 (GT4) [7] deployed
in each VM. The GT4 is configured during the VM cre-
ation and started at the VM boot time, in such a way that
the CM can easily submit the task to the VM and check its
state using the GT4 interface. On the other side, the AM is
in charge of monitoring the resources provided to and used
by the VM ensuring the fulfillment of its SLA. There is one
AM instance per application running in the service provider,
thus several AM instances can exist per physical machine.

4.1 SLA description

Each application has its own SLA, described in XML
using both WS-Agreement [9] and WSLA [16] specifica-
tions, as done in TrustCoM [21]. The SLA includes two
simple metrics: the amount of memory used and a perfor-
mance metric which intends to compute the real usage of
the CPU (see the definition below). An application will
have the amount of cycles/sec specified in the SLA whereas
it uses all the assigned CPU. If the application is not us-
ing all the resources then the SLA will be always fulfilled.
The SLA will be violated only when the application is us-
ing all the assigned resources and these resources are not
enough. The performance metric for the CPU usage is de-
fined as Used CPU

100 · CPU frequency. This is a very simple
metric used to test the viability of our proposal, assuming
that the pool of machines is homogeneous (as occurs in our
testbed). Next version of the prototype will support hetero-
geneous machines.

When defining SLA metrics, it is desirable that they can
be defined through average values, since otherwise the eval-
uation of the SLA metrics can depend more on when they
are measured than in the metrics themselves. This can be
accomplished through the SLA specifications, which allow
defining the window size of the average and the interval be-
tween two consecutive measures. The following code gives
an example showing how we have used these capabilities in
our SLAs. Notice that we have defined a window size of 10,
and an interval of 2 seconds.

...
<wsla:Schedule name="twoSecSchedule">
<wsla:Period>
<wsla:Start>



2005-12-31T00:00:00
</wsla:Start>
<wsla:End>

2008-12-31T00:00:00
</wsla:End>

</wsla:Period>

<wsla:Interval>
<wsla:Seconds>2</wsla:Seconds>

</wsla:Interval>
</wsla:Schedule>
...
<wsla:Metric name="average_process_Cpu_Load"

type="double" unit="percent">
<wsla:Source>

Application_monitor
</wsla:Source>
<wsla:Function resultType="double"
xsi:type="wsla:Mean">
<wsla:Metric>

process_cpu_time_serie
</wsla:Metric>

</wsla:Function>
</wsla:Metric>

<wsla:Metric name="process_cpu_time_serie"
type="double" unit="percent">

<wsla:Source>
Application_monitor

</wsla:Source>
<wsla:Function resultType="TS"
xsi:type="TSConstructor">
<wsla:Schedule>

twoSecSchedule
</wsla:Schedule>
<wsla:Metric>

process_Cpu_Load
</wsla:Metric>
<wsla:Window>10</wsla:Window>

</wsla:Function>
</wsla:Metric>
...

4.2 SLA monitoring

The AM includes a subsystem for monitoring the metrics
defined in the SLA, which is implemented using daemons
running in the Xen Domain-0. There is one daemon per
VM, which obtains all the information referent to this VM
via XML-RPC calls to the Xen API.

These daemons cannot run inside the VMs for two rea-
sons. Firstly, doing this would consume part of the assigned
resources to the task execution, charging to the customer
the cost (in CPU and memory) of this monitoring. Sec-
ondly, the monitoring system cannot take real measures in-
side the VM: this can be only accomplished by measuring
from the Xen Domain-0. We have tried other monitoring
options (e.g. Ganglia [6]), but since they do not have ex-
plicit support for virtualization, the obtained measures were
not correct.

4.3 SLA enforcement

Described proposal assumes that the SLA negotiation
between the customer and the provider has been carried out
previously, being our prototype responsible of guarantying
the fulfillment of the agreed SLA by means of adequate re-
source allocation. The agreed SLA is attached to the task
execution request that arrives at the RM. This SLA is as-
signed to the AM that monitors the VM which is going to
execute the task.

The agent within this AM executes the SLA enforcement
cycle shown in Figure 4. Notice that, the needed reactive-
ness to SLA violations can be easily accomplished using
agent behaviors. The cycle is executed every second. This
forces the minimum granularity of the interval between two
consecutive measures for each metric in the SLA (see Sec-
tion 4.1) to be also 1 second.

The Direct Measurer component gets the values from the
monitoring subsystem, controlling the measurement inter-
vals for each metric in the SLA and ensuring the refresh of
the measures on correct time. When the new values arrive at
the Measurer Sched component, it checks if any metric has
updated its value. In this case, the Measurer Sched recalcu-
lates the top level metric defined in the SLA and it compares
the result with the agreed value specified in the SLA. If the
SLA is fulfilled, the Measurer Sched waits until the next
iteration, otherwise the SLA violation protocol starts.

The first step in the SLA violation protocol is request-
ing more resources to the RM (by increasing the VM dy-
namic priority). If the node has surplus resources that can
be assigned to that VM, the RM will redistribute them as de-
scribed in Section 3.2 and the SLA cycle will start again. If
all the physical resources are already allocated, the AM will
contact the CM to communicate the SLA violation. When
the CM receives this notification, it must decide what to
do with the task that is violating its SLA, taking into ac-
count the customer’s priority and the task deadline. This
is currently not implemented, but possible actions include
continuing the execution besides the SLA violation (if this
is acceptable for the customer), modifying the resource re-
quirements of the task and reschedule it (if task deadline
permits the rescheduling), or canceling the task.

Notice that, since the RM always guarantees the mini-
mum amount of resources specified by the SeS when it re-
quests the creation of a VM, the SLA can only be violated
when this minimum amount of resources are not enough to
fulfill the SLA. This can occur when running an applica-
tion with variable resource requirements along time (e.g. a
web server), which receives an unexpected workload, or as
a result of an error in the SeS inference process for estimat-
ing the resources. The latest situation has been assumed in
Section 6 to test the functionality of the SERA.

Using the adaptation mechanism described in this sec-



Figure 4. SLA enforcement cycle

tion, the system is able to manage itself avoiding as much
as possible the SLA violations. Of course, more intelligence
could be applied in this part. For example, we are planning
to incorporate economic algorithms taking in account the
penalizations for violating the SLA, in order to get the best
configurations in terms of profit.

5 Experimental Environment

As commented in Section 2, RM and AM are part of a
bigger system that enables semantic resource allocation in a
virtualized environment. In order to evaluate our proposal,
the whole system needs to be executed, although results
presented in this paper concentrate mainly in the described
components. The main technologies used in the SERA pro-
totype include Ontokit [17], which is a Semantic OGSA im-
plementation, for implementing the SMR; the Jena 2 frame-
work [11] for supporting inferences and the management of
the semantic metadata; and Jade [10] as the agent platform.
Xen [22] is used as virtualization software.

Our experimental testbed consists on two machines. The
first one is a Pentium D with two CPUs at 3.2GHz with
2GB of RAM that runs the SeS, the CMs and the SMR. The
second machine is a 64-bit architecture with 4 Intel Xeon
CPUs at 3.0GHz and 10GB of RAM memory. It runs Xen
3.1 and a RM executes in the Domain-0. These machines
are connected through a Gigabit Ethernet.

Most part of the software is written in Java and runs un-
der a JRE 1.5, except the scripts that manage the creation of
the virtual machines, which are written in Bash script, and
some libraries used for accessing Xen, which are in C.

6 Experimental Evaluation

This section presents the evaluation of our proposal,
which includes the quantification of the time needed to cre-
ate a VM and a proof-of-concept experiment for demon-

strating the functionality of the whole SERA prototype, but
focusing on the SLA-driven dynamic resource distribution.
The applications used in the experiments simulate scientific
applications with high CPU consumption.

6.1 VM creation performance

This section provides some indicative measurements
about the time needed to create a VM and make it usable
for a customer’s application, and the benefit of our cache
systems for reducing the VM creation time compared with
the default approach.

As described in Section 3, the creation of a VM implies
downloading and creating a default base system image with
debootstrap. This requires around 150 seconds, but it is
only done once and can be reused for each new VM. The
second caching level, which consists of pre-copying the de-
fault and the software image, takes approximately 60 sec-
onds per VM. Finally, applying whole caching of each disk
image (including home and swap spaces) needs 13.5 sec-
onds. Using both caching systems, an image can be created
in only 2 seconds. The different times needed for the cre-
ation of a typical VM are summarized in Table 1. Notice
that, once the image is ready, it must be loaded, which needs
4 seconds. According to this, the total time needed to have
a full configured system started is less than 7 seconds, when
taking advantage of the whole caching system.

Action Time
Create and download default system image 152.6
Create cached base system image 59.1
Create cached base software image 13.9
Create image using caching systems 2.3
Load image 4.4
Total time for running an image 6.7

Table 1. VM creation times

Nevertheless, the above VM creation time does not in-
clude the time that is needed by the guest operating sys-
tem to boot and be available to the user. In addition, the
time needed for instantiating installed software must be also
considered. All these times can be appreciated in Figure
5, which shows the CPU usage of a given VM during its
whole lifetime (from the VM creation to the VM destruc-
tion). During the phase A, the Xen Domain-0 creates the
VM. This spends almost one CPU. During the phase B, the
guest operating system is booted (first peak in the CPU us-
age graph) and then the GT4 is started, which includes cer-
tificates creation and deployment of the container (second
peak in the CPU usage graph). At this point, the customer’s
task can be submitted, executing during the phase C. Fi-
nally, during the phase D, the Xen Domain-0 destroys the



Figure 5. VM lifecycle

VM. Notice that the CPU consumption of the Xen Domain-
0 is only noticeable during the creation and destruction of
the VM.

The results in this figure confirm that the creation of a
VM takes around 6 seconds, while the guest system boot
and the GT4 start take around 30 seconds. According to
this, the full creation of the VM takes around 36 seconds
(from the moment that the RM receives the request until the
moment when the VM is fully functional and the customer’s
task can be executed). In addition, VM destruction takes
also 6 seconds.

6.2 SLA-driven resource distribution

This experiment demonstrates how resources are dynam-
ically reallocated among applications and how the system is
able to detect and resolve an SLA violation from one of the
applications and reallocate resources (memory and CPU)
until all the SLAs are fulfilled.

The experiment consists of running a total amount of
three tasks with different requirements and different SLAs
within three different VMs located in the same machine.
Table 2 describes for each task: its requested CPU (i.e. the
value provided by the SeS) (REQ), and the agreed CPU met-
ric in the SLA (SLA).

The amount of CPU allocated to each VM is quantified
using the typical Linux CPU usage metric (i.e. for a com-
puter with 4 CPUs, the maximum amount of CPU will be
400%). For simplicity, all the measures and figures are re-
ferred only to CPU.

Figure 6 displays the execution of the three tasks exe-
cuted in the test. The first three plots show the allocated
CPU for this particular VM, the CPU really consumed in
each moment by the VM and a horizontal line that indicates
the SLA threshold. If at any moment the consumed CPU
is the same then the allocated CPU and this value is lower
than the SLA line, it means that the SLA is being violated.

CPU
Req (%) SLA

Task1 100 100
Task2 100 190
Task3 105 105

Table 2. Description of tasks

Notice that, SLA violations occur only if the task is using
all the allocated resources, and despite this, the SLA thresh-
old is not respected. Finally, the fourth plot corresponds to
the consumed CPU by the Xen Domain-0, and it shows the
CPU costs of creating and destroying VMs and of reallocat-
ing resources among them.

In the Figure 6 we can distinguish three situation of the
system:

Zone A. This is the initial part of the experiment. Task1,
which requires 100% of CPU (2), arrives at the system.
When the request for creating the first VM is received,
the RM has no other VM to manage, hence, it gives the
whole machine (400% of CPU) to this newly created
VM.

Task2, with a CPU requirement of 100% of CPU, is
sent to the system. Task2 represents a special case: we
assume that there has been an error when estimating
the minimum amount of resources needed to fulfill the
SLA, so that they are not enough to fulfill the SLA.
In this case the SLA needs 190% of CPU to be ful-
filled, but the CPU requested by the SeS for this VM is
only 100%. When this second VM is created, the total
amount of CPU allocated in the machine is 200%, so
there will be 200% of CPU free, which is distributed
among the two VMs (100% for each). At this moment,
any SLA is being violated, as both Task1 and Task2
have 200% of CPU. At the end of Zone A we have two
applications sharing the whole machine.

Zone B. In this zone, Task3, which requires 100% of CPU,
is started, so the allocated CPU will be 300% of 400%.
In this situation, the surplus resources are also equally
shared among all the VMs, and, as we can see at the
beginning of Zone B, all the tasks have 133% of CPU.
Having only 133% of CPU, Task2 violates its SLA
(notice that at the center of Zone B, the assigned CPU
is under the SLA threshold). This starts the SLA viola-
tion protocol, which reallocates the CPU progressively
until all the SLAs are fulfilled. We can see how the
surplus CPU assigned to Task1 and Task3 is moved to
Task2 until its allocated CPU is over the SLA thresh-
old.

Zone C. This is the final zone, where all the SLAs are again



0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 1

Usage Task1

Capacity Task1

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 2

Usage Task2

Capacity Task2

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Virtual Machine 3

Usage Task3

Capacity Task3

SLA Limit

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Domain 0

Domain-0

A B C

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

C
P

U
 u

sa
g

e
 (

%
)

Time (seconds)

Figure 6. CPU allocation and consumption

within their thresholds. Notice that when a task final-
izes its execution, its allocated resources are freed and
then redistributed among the other tasks.

Obviously, if a fourth application arrived at this machine
and allocated all the surplus resources, the SLA for the
Task2 would be violated again, and in this case, there would
not be enough free resources to solve this violation. In this
situation, the AM would communicate this situation to the
CM, in order to reschedule the task which is violating the
SLA in another machine.

Finally, Figure 7 gives a global vision of Figure 6 show-
ing how the physical machine is partitioned along time
among the three executed tasks and how the RM (contained
in the Xen Domain-0) uses the CPU in every moment. This
figure shows that the whole machine is always assigned,
maximizing resource utilization.

7 Related Work

The literature includes a considerable amount of works
proposing solutions for resource management in service
providers. Some of these solutions are driven by SLAs, as in
our case. For example, in [3], the authors combine the use of
analytic predictive multiclass queuing network models and

combinatorial search techniques to design a controller for
determining the required number of servers for each appli-
cation environment in order to continuously meet the SLA
goals under a dynamically varying workload. Another ex-
ample is Oceano [2], which is a SLA-driven prototype for
server farms, which enables the dynamic moving of servers
across clusters depending on the customer changing needs.
The addition and removal of servers from clusters is trig-
gered by SLA violations. Also in [15], which presents a
middleware for J2EE clusters that optimizes the resource
usage to allow application servers fulfilling their SLA with-
out incurring in resource over-provisioning costs. This re-
source allocation is done adding or removing nodes from
the cluster.

Lately, some works have exploited virtualization capa-
bilities for building their solutions. On one hand, virtu-
alization has been used to facilitate system administration
and provide the users with dedicated and customized vir-
tual working environments, making more comfortable their
work. For example, VMShop [14] is a virtual manage-
ment system which provides application execution environ-
ments for Grid Computing. It uses VMPlant to provide au-
tomated configuration to meet application needs. VMPlant
also allows the creation of flexible VMs that can be effi-
ciently deployed (by implementing a caching-based deploy-



Figure 7. CPU allocation between VMs

ment) across distributed Grid resources. In addition to this,
it is typical that these virtual environments can be sched-
uled among different nodes by using virtualization features
such as pausing and migration, as occurs in Globus Virtual
Workspace [13] and SoftUDC [12]. Additionally, the lat-
ter adds an efficient shared storage between nodes located
in different locations. This project provides the capability
of sharing resources of different organizations and solves
problems such as sharing data between separated clusters.

On the other hand, while the above proposals deal only
with the global scheduling of VMs between nodes, other
works have also used virtualization to enable fine-grain dy-
namic resource distribution among VMs in a single node.
For instance, [19] develops an adaptive and dynamic re-
source flowing manager among VMs, which uses dynamic
priorities for adjusting resource assignation between VMs
over a single server for optimizing global machine perfor-
mance. [18] introduces an adaptive resource control sys-
tem (implemented using classical control theory) that dy-
namically adjusts the resource shares to VMs, which con-
tain individual components of complex, multi-tier enter-
prise applications in a shared hosting environment, in order
to meet application-level QoS goals. [20] takes advantage
of virtualization features to collocate heterogeneous work-
loads on any server machine, thus reducing the granular-
ity of resource allocation. Finally, [8] has developed a new
communication-aware CPU scheduling algorithm that im-
proves the performance of a default Xen monitor by en-
abling the underlying scheduler being aware about the be-
havior of hosted applications.

Our work proposes a more general and extensive solu-
tion for managing service providers by joining in a single
framework the creation of application specific virtual exe-

cution environments on demand, the global resource allo-
cation among nodes, and the SLA-driven dynamic resource
redistribution at node level (based on the redistribution of
surplus resources). Some other works combine some of
these functionalities, albeit none of them provides all our fa-
cilities. In particular, [1] proposes a dynamic capacity man-
agement framework for virtualized hosting services, which
is based on an optimization model that links a cost model
based on SLA contracts with an analytical queuing-based
performance model. However, this work does not support
either the creation of VMs on demand or the two-level re-
source allocation. In addition, the evaluation does not use
a working implementation of the proposed system, but a
discrete event simulation. Similarly, [23] presents a two-
level autonomic resource management system for virtual-
ized data centers that enables automatic and adaptive re-
source provisioning in accordance with SLAs specifying
dynamic tradeoffs of service quality and cost. A novelty
this approach is the use of fuzzy logic to characterize the
relationship between application workload and resource de-
mand. However, this work does not support the creation of
VMs on demand either.

8 Conclusions and Future Work

This paper has described a working prototype of a
framework for facilitating resource management in service
providers, which is part of the Semantically-Enhanced Re-
source Allocator developed within the BREIN European
project. Described solution exploits the well-known fea-
tures of virtualization for providing application specific vir-
tual environments, granting in this way full control to the
applications of their execution environment without any



risks to the underlying system or the other applications.
These virtual environments are created on demand and con-
solidated in the provider’s physical resources. This allows
the provider to use better its resources and reduce costs.

In addition, our approach supports fine-grain dynamic
resource distribution among these virtual environments
based on Service Level Agreements (encoded using a real
SLA specification). The system implements a self-adaptive
behavior: each application receives enough resources to
meet the agreed performance goals, and free resources can
be dynamically redistributed among applications when SLA
violations are detected.

We have presented experimental results demonstrating
the effectiveness of our approach. These experiments show
that application specific VMs can be ready to be used in a
short period of time (around 7 seconds). In addition, the
evaluation demonstrates that our system is able to adapt the
resource allocations under changing conditions while ful-
filling the agreed performance metrics and solve SLA vio-
lations by rescheduling efficiently the resources.

Although current prototype has a pretty good function-
ality, we are planning some improvements which include
adding more complex policies to the RM based on eco-
nomic parameters (e.g. rewards, penalties), incorporating
the pausing/resuming mechanism for pausing tasks when
others need more resources, and migrating tasks when there
is an SLA violation and there are not enough resources on
the local machine to solve it. In addition, we are extending
the system to manage additional resources such as the net-
work and the disk, and for considering the Xen Domain-0
CPU usage in the resource allocation decisions.

References

[1] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer,
and F. Safai. Self-Adaptive SLA-Driven Capacity Manage-
ment for Internet Services. In 10th IEEE/IFIP Network Op-
erations and Management Symposium (NOMS 2006), Van-
couver, Canada, April 3–7, 2006, pages 557–568, 2006.

[2] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, S. Kr-
ishnakumar, D. Pazel, J. Pershing, and B. Rochwerger.
Oceano - SLA-based Management of a Computing Util-
ity. In IFIP/IEEE Symposium on Integrated Network Man-
agement (IM 2001), Seattle, Washington, USA, May 14–18,
2001, pages 855–868, 2001.

[3] M. Bennani and D. Menasce. Resource Allocation for Au-
tonomic Data Centers using Analytic Performance Models.
In 2nd International Conference on Autonomic Computing
(ICAC’05), Seattle, Washington, USA, June 13–16, 2005,
pages 229–240, 2005.

[4] EU BREIN project. http://www.eu-brein.com.
[5] J. Ejarque, M. de Palol, F. Julià, I. Goiri, J. Guitart, R. M.

Badia, and J. Torres. Using Semantics for Enhancing Re-
source Allocation in Service Providers. Technical Report
UPC-DAC-RR-2008-3, 2007.

[6] Ganglia Monitoring System.
http://ganglia.sourceforge.net/.

[7] Globus Toolkit. http://globus.org/toolkit/.
[8] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Siva-

subramaniam. Xen and Co.: Communication-aware CPU
Scheduling for Consolidated Xen-based Hosting Platforms.
In 3rd International ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments (VEE’07), San Diego, Cali-
fornia, USA, June 13–15, 2007, pages 126–136, 2007.

[9] GRAAP Working Group. Web Services Agreement Specifi-
cation (WS-Agreement), Version 2005/09, Global Grid Fo-
rum. Technical report, 2005.

[10] Java Agent DEvelopment Framework. http://jade.tilab.com/.
[11] Jena Semantic Web Framework. http://jena.sourceforge.net/.
[12] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell,

M. Wray, T. Christian, N. Edwards, C. Dalton, and F. Gittler.
SoftUDC: a Software-based Data Center for Utility Comput-
ing. Computer, 37(11):38–46, 2004.

[13] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron.
Virtual Workspaces in the Grid. In 11th Europar Confer-
ence, Lisbon, Portugal, September, 2005, pages 421–431,
2005.

[14] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing. In
2004 ACM/IEEE conference on Supercomputing (SC ’04),
page 7, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[15] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini. SLA-Driven
Clustering of QoS-Aware Application Servers. IEEE Trans-
actions on Software Engineering, 33(3):186–197, 2007.

[16] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web
Service Level Agreement (WSLA) Language Specification,
Version 1.0, IBM Corporation. Technical report, 2003.

[17] EU OntoGrid project. http://www.ontogrid.net.
[18] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,

A. Merchant, and K. Salem. Adaptive Control of Virtual-
ized Resources in Utility Computing Environments. ACM
SIGOPS Operating Systems Review, 41(3):289–302, 2007.

[19] Y. Song, Y. Sun, H. Wang, and X. Song. An Adaptive Re-
source Flowing Scheme amongst VMs in a VM-Based Util-
ity Computing. In 7th IEEE International Conference on
Computer and Information Technology (CIT 2007), pages
1053–1058, October 2007.

[20] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and
D. Chess. Server Virtualization in Autonomic Manage-
ment of Heterogeneous Workloads. In 10th IFIP/IEEE In-
ternational Symposium on Integrated Network Management
(IM’07), Munich, Germany, May 21–25, 2007, pages 139–
148, 2007.

[21] The TrustCoM Project, Priority IST-2002-2.3.1.9. 30 Apr.
2006. http://www.eu-trustcom.com.

[22] Xen Hypervisor. http://www.xen.org.
[23] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On

the Use of Fuzzy Modeling in Virtualized Data Center Man-
agement. In 4th International Conference on Autonomic
Computing (ICAC 2007), Jacksonville, Florida, USA, June
11–15, 2007, page 25, 2007.


