
On the usefulness of object tracking techniques in
performance analysis

Germán Llort, Harald Servat, Judit Giménez and Jesús Labarta

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

e-mail: {gllort, harald, judit, jesus}@bsc.es

Abstract—Object tracking in computer vision has been applied
for many years in the context of applications that require the
recognition of a moving object in an image or every frame of a
sequence of scenes, with practical uses in a wide range of fields,
including human-computer interaction, security and surveillance,
traffic control, augmented reality and more.

In performance analysis, it is crucial to understand the details
of a parallel application if we are to tune it to achieve its
maximum performance. However, the actual application behavior
is directly bound to its execution conditions: input data sets,
configuration variables, number of processes, specific hardware,
etc. Then, beyond the details of a single-experiment, a far more
interesting question arises. How does the application behavior
change along with the execution parameters?

In this paper, we leverage object tracking techniques to analyze
how the behavior of a parallel application evolves through
multiple experiments where the execution conditions change. This
method provides apprehensible insights on the influence of the
application parameters on its behavior, and helps to identify
performance trends of the different computing phases and how
do they scale.

I. INTRODUCTION

When starting out the performance analysis of a parallel
scientific application, the user usually faces a wide range of
choices to make. How many processes to run the application
with, the inputs to use, the number of timesteps to simulate,
the minimum accuracy of the results, hardware settings, and
many other configuration options that are significant for the
particular application. The combination of these factors con-
stitute an unique execution scenario, which directly influences
the application behavior and results.

While many useful information can be extracted from the
analysis of a single experiment, it is not until we understand
how all these variables affect the performance of the program
that we get a complete understanding of its behavior. To this
end, the user will often require to run multiple experiments
with different configurations.

At the moment that you try to compare two or more
experiments with different configurations, one has to take into
account that the performance characteristics of the different
parts of the application can change significantly. For instance,
consider the same application executed twice, doubling the
number of processors. If the work distribution is well balanced,
one would expect the number of instructions executed in the
different computing regions to drop by a half.

In addition to changes in the application scale, there is
a good variety of factors that may have an impact on the
execution, such as the size of the problem and the physical
mapping of tasks onto nodes; and multiple aspects that might
be interesting to evaluate, including the temporal evolution of
the program, CPU throttling adjustments, or different parallel
implementations (i.e. MPI vs. OpenMP).

Understanding the effect of these variations is important not
only to get better knowledge of the application behavior, but
also to quantify how much performance improves or degrades,
and to foresee tendencies of the different parts of the code.
Such type of analysis indicates the expert the right direction
to focus all the optimization effort.

The main contribution of this paper is to bring the concept
of object tracking into the world of performance analysis,
with the objective of studying performance variations due to
changes in the execution conditions across multiple experi-
ments. Traditionally, tracking techniques are used to locate
a moving object in an image or sequence. Similarly, we are
expressing the different parts of the application as trackable
objects in a space whose dimensions are not the actual physical
dimensions of height, length and breadth, but performance
metrics.

Difficulties in tracking objects arise due to abrupt object
motion and changes of appearance. Tracking code regions
across the performance space can borrow certain assumptions
about the object’s direction and motion speed that makes the
task easier. Generally speaking, an application performance
will neither radically change all of a sudden, nor behave
diametrically opposed as it used to. In this sense, it is feasable
to detect the evolution of every region of the code across
different experiments. Then, for each region we can compute
automatic metrics to evaluate their performance trends and
scalability.

The rest of the paper is structured as follows. Section II
describes the way we express the application performance
metrics as trackable objects. Section III describes the tracking
algorithm adapted to this particular use case. Finally, we
compile the conclusions and outline the future directions in
our research in Section IV.



(a) Running 128 tasks (b) Running 256 tasks

Fig. 1: Structure of WRF computing bursts

II. CLUSTERING FOR STRUCTURE DETECTION

Cluster analysis has proved useful in the context of per-
formance tools to characterize the structure of an application.
The approach presented in [1] applies density-based clustering
with respect to several performance metrics (i.e. instructions
completed, IPC, cache misses) in order to identify behavioral
trends in the computing phases. A practical use case of this
technique is, for instance, to differentiate invocations to the
same routine with variable performance.

The clustering algorithm takes as input the computing
regions (i.e. CPU bursts) of the application, which refer to the
sequential computations between MPI communications. This
information is extracted from a Paraver trace [2], a sequence of
time-stamped events that records performance measurements
of the application during the run. Every CPU burst is defined
by its duration and a set of performance metrics read at the
beginning and end of the region. By grouping together all
computations that have similar performance with respect to
these metrics (i.e. instructions completed, IPC, cache misses,
etc.), the structure of all tasks of the application gets clearly
exposed.

Figure 1a shows the structure of the ten most time-
consuming computing regions of the WRF application [?].
Clusters are formed according to similarities in the achieved
performance (X-axis) and number of instructions executed
(Y-axis). Those that stretch vertically (i.e. cluster 3) denote
instructions imbalance, while those that stretch horizontally
(i.e. 7 and 10) reflect IPC variations. Multiple computations
happening simultaneously that perform the same amount of
work but executed at variable speeds, or vice-versa, can be the
source of significant load-imbalances in a parallel application,
and thus they are interesting to be studied. Time and space
variations can be studied over the trace timeline. Figure 2
shows the clusters distribution across time and processes (X-
and Y-axis, respectively). As you can see, this application
follows a marked SPMD model where all processes perform
the same type of computation at the same time, in a clear
pattern that repeats over iterations.

The way clusters are formed mainly depends on the struc-
ture of the data being analyzed. When the execution conditions
change, so will the application performance, and thus will the
clustering results. Figure 1b shows the computations structure
of the same application, but doubling the number of cores in
the execution. The number of instructions executed per cluster
has reduced in inverse proportion, and so all clusters have
moved down across the Y-axis. A few clusters have slightly
improved their performance (i.e. 4, 5, 6 and 7 moved right to
higher IPC’s), while cluster 10 significantly degraded.

Fig. 2: Clusters distribution of WRF over time

Clusters can not only move long distances in the space
or change their shape, but they can vary their density, split,
or merge together. Because of these variations, it is possible
that the same computing regions are represented by different
clusters in different experiments, and might not be easy to
relate how much did they change from one experiment to
another.

The objective of this work is to perform an automatic
detection of these variations across different experiments in
relation to changes in the execution conditions. To this end,
we extrapolate the concept of recognizing moving objects in
a sequence of images to clusters. Clustering the application
can be seen as an image that describes its global structure.
Subsequent clusterings result then in a sequence of images that
can be compared to see changes in the application behavior.
Every cluster, that represents a region of code, can move
or change its appearance across images, which reflects per-
formance variations. Tracking their evolution across different
experiments, enables us to study the performance characteris-
tics of the different computing phases of the application, and



to understand how the different execution conditions get to
influence the behavior of the application.

III. PERFORMANCE TRACKING

The objective of this mechanism is to automatically de-
termine which clusters are equivalent across different experi-
ments with changing conditions (i.e. scale the number of pro-
cesses, size of the problem, different hardware, etc.). The main
difficulty lies in reacting to consequent long displacements and
changes in their appeareance (shape, density, etc) across the
sequence of clusterings.

Even though the execution conditions of an application
change, its general behavior will usually neither turn to be
very different, nor change abruptly. For instance, the expected
outcome of doubling the size of the problem computed, would
be the execution to take twice the time to complete. In general,
changes in the execution conditions will mean proportional,
sometimes predictable, changes in the application behavior.
In this sense, it is reasonable to assume certain restrictions
regarding the direction and speed of the moving objects
between scenes.

When comparing two clusterings, we are generally bound
to expect slight cluster movements between executions, or
the whole cluster space to move as a pack in a common
direction (i.e. all clusters improve performance or execute
less instructions). This assumption allows to establish relations
between clusters based on a proximity criteria, being the
nearest counterpart cluster the more likely to be the same. Our
first approach to the tracking problem uses a nearest-neighbor
Cross-Classification algorithm to measure the distances cov-
ered by moving clusters and correlate those that are closer.

Considering only the minimum distances might not be
enough to find an exact correlation between all clusters.
In some cases, they can move long distances with variable
directions, which can lead to incorrect matches. In addition to
this, we pay attention to other structural characteristics of the
clusters that can be extracted from the information comprised
in the trace, that can help us to evaluate whether two clusters
are equivalent:

• Callstack references. Clusters are linked to concrete re-
gions of code if using optional callstack information, that
expresses from which point of the code a given cluster
happens. There will be an explicit relation between two
clusters that are executed in the same code regions.

• SPMD alignment. If the application is SPMD, all pro-
cesses will be executing the same code regions simul-
taneously. At any point in the execution sequence, all
clusters that are happening simultaneously should refer
to the same region of code.

The following sections describe the previous evaluators
in detail and how they are combined to build a decision
heuristic that determines whether two clusters are the same or
not despite structural differences. This heuristic is contrasted
with all resulting clusters in order to determine a global
sequence that shows how does each cluster evolve across all
experiments.

A. Cross-classification

This evaluator takes a pair of clusterings and performs a
nearest-neighbor classification of all points from the first into
the latter, and viceversa. The classification criteria is based on
euclidean distances, so that all points will get classified to the
nearest counterpart cluster.

The idea that lies behind this process supports on the fact
that the behavior of a parallel application will not radically
change across experiments. Consider the previous example
where we doubled the number of processes we run the
application WRF with (see Figure 1. One can then expect a
proportional decrease in the number of instructions executed
per each cluster. Geometrically, all clusters uniformly move
down in the instructions axis of the clustering space, and
the relative distances between keep constant. This results to
be true for the general case, thus cross-classifying to the
nearest cluster should usually result in a one-to-one mapping
association of clusters.

However, there are frequent exceptions where the points that
conform a given cluster will split into two or more, as there
are multiple target candidate clusters that are close enough.
This can be seen in Figure 3, where the matrices show the
percentage of points from clusters in one of the experiments
classified among clusters of the other. Only those cells with a
value of 100% express that for the given cluster an unequivocal
counterpart is found.

Also, there are infrequent cases where some clusters can
move a long way in the space, as can be the case of Cluster
10 from 1a to 1b. In these situations, cross-classification based
on distance is likely not to assign the points to the correct
cluster, but we can then use the complementary evaluators to
decide whether the cluster is the same or not.

B. Callstack references

Fig. 4: Clusters tracking through callstack information

The Extrae tracing toolkit [2] can optionally collect callstack
information that points to which function, file and source code
line is a given instrumentation probe called from. In this way,
every computing burst is unequivocally linked to a particular
code point.

If two given clusters are equivalent, it is clear that the com-
putations than conform them have to refer to the same source
code regions. Therefore, this evaluator prunes the search space
looking for clusters that share the same code references. In the
particular case where two clusters are executed from the same
unique code region, we are positevely sure that both clusters



(a) Classify data from the 128 tasks experiment into the 256 (b) And vice-versa, from 256 to 128

Fig. 3: Cross-classification example

are the same. But for this to be true, there must not be other
clusters sharing the same callstack reference.

Figure 4 illustrates the relations that can be outlined between
clusters from their code references. Both clusters 3 and 5
share the same reference to the line of code 6,474 in the file
module comm dm.f90, meaning that this code region presents
two different behaviors. Though on its own, this information
does not allow to differentiate whether these clusters are
respectively the same, or whether they have swapped from
one experiment to the other.

C. SPMD alignment

Fig. 5: Time sequence of clusters in WRF

When the application model is SPMD, all processors are
expected to be executing the same code region at a time. In
this case, if two different clusters happen simultaneously, they
are likely to refer to the same code region, although there
might be structural differences that make them separate (i.e.
the application presents work imbalance and some processes
execute more instructions than others). For instance, Figure
5 shows that different processes are executing Clusters 7 and
14 simultaneously, while they actually refer to the same code
region but slight performance variations make them separate,
and should be seen just as one single cluster.

Whether the application is SPMD is evaluated with the
sequence algorithm presented in [3]. This algorithm computes
a score that quantifies the degree of SPMD-ness, and generate
the execution sequence of clusters for every task of the
application. Aligning these sequences we can detect whether
two or more clusters get executed simultaneously at different
application tasks. The drawback of this evaluator is that it
requires the application to be highly SPMD. Otherwise, the
cluster sequences might not align correctly, which would lead
to false positives.

D. Multi-criteria heuristic

The evaluators introduced above consider different charac-
teristics of the clusters, but they are not infallible and have their
own strengths and weaknesses each. Callstack linking can be
univocal, but it is not always; rely on clusters alignment is
limited to SPMD applications; and cross-classification might
miss clusters if their structure changes significantly. While
the latter is always applicable, the first two depend on the
availability of extra information and the application structure.
On their own, it is not difficult to find test cases to prove
them wrong. However, it is possible to combine all three
to determine a precise correlation of clusters across different
experiments with a very small margin of error.

If callstack information is present and the code references
are univocal, there is an unequivocal relation between clusters
and no extra analysis is required. When there are multiple
counterpart candidate clusters, we then intersect the results
of the calltack and cross-classification evaluators. This makes
matches to the nearest clusters, amongst all that refer to the
same code region. For the set of clusters that results from
the intersection, we then use the alignment evaluator to see
whether any other cluster not already included in the set gets
executed simultaneously with any of those in the set, and such
cluster is also added. This can be seen as finding the relation
between different clusters that refer to the same code region,
but they are structurally so different that the cross-correlation
fails to match them.

Clusters correlations are computed for every pair of sub-
sequent clusterings. Then the tool builds a global sequence
illustrating the evolution of each cluster across the different
experiments. Having detected which clusters are equivalent,
we perform a recoloring process and produce scatter plots that
show the structure of the application keeping the same color
for clusters that represent the same code regions, as shown in
Figure 6. These plots can be displayed together or in simple
animation, so that it is very easy to identify alterations in the
clustering space, and whether the clusters move, merge, split or
change their shape. This enables the study of the repercussion
of the changes in the execution conditions on every particular
region of code.

In addition, we compute averaged metrics per cluster for all
the clustering dimensions and experiments. These metrics are
drawn in a tendency line chart that shows how does a cluster



Fig. 6: Recolored multiplot

evolve according to every particular performance parameter.
Figure 7a shows the evolution in Instructions per Cycle of
WRF from 128 to 256 tasks. It is easy to see that clusters
10 and 17 present the most significant degradation, while 16
improves performance. The metric displayed in 7b represents
the dispersion in IPC, which decreases for clusters 7 and 17,
and remains more or less constant for the rest. The fact that
the dispersion does not increase with the number of processes
suggests that the application is well balanced.

This information can be used to gain understanding of
the influence of the execution parameters on the application
performance, predict the outcome of future experiments and
study how well the application scales.

IV. CONCLUSIONS

There is a good number of parameters that can potentially
modify the execution of an application: the number of pro-
cesses that it is run with, the size of the problem to solve,
specific inputs and particular configuration variables, hard-
ware, etc. In order to get better knowledge of the application
behavior, it is important to understand how all these parameters
can affect the execution, which will often require multiple
experiments with different adjustments.

Applying cluster analysis to the computing regions of the
application we can identify their relevant characteristics and
gain insight into their structural properties. But modelling
clusters based on performance data is strongly tied with the
application behavior. If the execution conditions change, so
will the performance of the application, and so will the
resulting clusters. Multi-experiment cluster analyses provides
useful information to study how any parameter will affect the
application performance, but it is necessary to keep track on
how do clusters change along with the execution conditions,
so that we can see the evolution of the different computing
regions.

In this paper we have presented a mechanism that analyzes
multiple clusterings that result from different execution con-
ditions, and automatically correlates the clusters that refer to
the same computing regions across all clusterings. To perform
this who-is-who correlation we use different evaluators that

(a) IPC tendency

(b) IPC dispersion tendency

Fig. 7: Tendency lines for WRF clusters

take into account different characteristics of the clusters: the
code region they refer to, their likeness in terms of the
clustering dimensions, and the SPMD-ness of the application.
Combining their use, we identify a global sequence for each
cluster that shows the evolution of its characteristics across
the different experiments, no matter changes in their shape,
density, performance, etc.

Over the clusters sequences we automatically compute av-
eraged metrics for each clustering parameter (i.e. IPC, instruc-
tions executed, cache misses, etc.), and draw tendency lines
that shows the direction in which every cluster progresses.
We also generate scatter plots that show the structure of the
computing regions, and perform a recoloring process to keep
the clusters that refer to the same region of code represented
with the same colors. In this way, a simple animation can
easily display changes in the clustering space.

All in all, this work enables the analyst to understand
how the different execution parameters have an inpact on the
performance; predict the outcome of future experiments; study
how well the application scales; and ultimately helps to gain
full understanding of the application behavior, much beyond
what can be learned from a single specific experiment.



ACKNOWLEDGMENT

The work is granted by the IBM/BSC MareIncognito project
and by the Comisión Interministerial de Ciencia y Tecnologı́a
(CICYT), contract TIN2007-60625.

REFERENCES

[1] J. González, J. Giménez, and J. Labarta, “Automatic Detection of Parallel
Applications Computation Phases,” in IPDPS’09: 23rd IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2009.

[2] “BSC Tools,” http://www.bsc.es/paraver.
[3] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic evaluation of the

computation structure of parallel applications,” in Proceedings of the
2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies, ser. PDCAT ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 138–145. [Online]. Available:
http://dx.doi.org/10.1109/PDCAT.2009.52


