
Probabilistic Timing Analysis
on Conventional Cache Designs

Leonidas Kosmidis†,∗, Charlie Curtsinger‡, Eduardo Quiñones†, Jaume Abella†, Emery Berger‡, Francisco J. Cazorla?,†
† Barcelona Supercomputing Center (BSC) ‡ University of Massachusetts (UMass)

∗ Universitat Politècnica de Catalunya (UPC) ? Spanish National Research Council (IIIA-CSIC)
Abstract—Probabilistic timing analysis (PTA) has emerged

as a promising alternative to traditional worst-case execution
time analyses, which can be excessively pessimistic on modern
hardware. PTA enables probabilistic worst-case execution times,
pairing time bounds with a probability that they will be violated
(e.g., with p < 10−16). Probabilistic worst-case execution times
can potentially enable far tighter bounds than conventional
analyses. However, the applicability of PTA has been limited
because of its dependence on relatively exotic hardware: fully-
associative caches using random replacement.

This paper extends the applicability of PTA to conventional
cache designs via a software-only approach. We show that a
compiler and runtime system that perform fine-grained ran-
domised layout of both code and data produces cache behaviour
that closely approximates that achieved by randomised cache re-
placement on unmodified binaries. Our analysis shows that PTA
can be employed on standard set-associative caches, significantly
broadening its applicability.

I. INTRODUCTION

Hard real-time systems depend on computing worst-case
execution times (WCET) that bound the amount of time a
given computation may take. Unfortunately, these computa-
tions are often extremely conservative on modern systems
that include hardware caches. These caches offer the potential
to dramatically increase performance by reducing memory
latency, but can make it difficult to predict the cost of memory
accesses.

A number of static analyses provide WCET calculations
tailored for systems with caches [9], [19], [18], [22]. In short,
these analyses statically model the cache state in order to clas-
sify memory accesses as either misses or hits. Unfortunately,
this approach requires complete information about access
history. Any uncertainty quickly cascades and forces these
analyses to conservatively assume that subsequent memory
accesses are misses (in the absence of timing anomalies [23]);
otherwise, they could underestimate the WCET. Since memory
accesses that miss in the cache are typically two orders of
magnitude slower than cache hits, the WCET computed by
these analyses can easily be overly pessimistic.

Dynamic measurement-based analyses combine worst-case
measurements computed by actual code execution. However,
like all dynamic analyses, their efficacy depends on effective
coverage by the inputs used for testing. An input that leads
to a memory layout not observed during testing could result
in a large number of cache misses, invalidating the WCET
calculation.

Recently, probabilistic timing analysis (PTA) has emerged
as an alternative family of solutions [12], [11]. Unlike standard
WCET estimates, probabilistic timing analysis yields prob-
abilistic worst-case execution time (pWCET): a time bound
together with an associated probability that this bound will
be violated (e.g., p < 10−16). Probabilistic timing analysis
can be applied in either a static context [11] (SPTA) or in
measurement-based dynamic analysis [12] (MBPTA). This
paper considers MBPTA techniques.

The probabilities generated by PTA depend on appropriate
hardware designs that allow such calculations by limiting

the dependence of execution time on execution history. For
example, the state of an LRU cache depends on the address of
every object that has been recently accessed—This dependence
makes it impossible to predict the likelihood that any given
access is a hit or a miss without full knowledge of the access
history, so it is incompatible with PTA.

One hardware cache design that is compatible with PTA
is a fully-associative cache with random replacement. In
such a cache, each access has a known hit/miss probability.1

This feature allows execution times to be modelled with
random variables that are independent and identically dis-
tributed (i.i.d.) [14], a characteristic that PTA, including SPTA
and MBPTA, depends upon. Unfortunately, fully-associative
caches are relatively rare because they are power hungry and
costly limiting the potential usefulness of probabilistic timing
analyses.

The key contribution of this paper is to extend the ap-
plicability of probabilistic timing analyses to conventional
hardware, including set-associative caches with approximate
LRU. We show that the use of a randomising compiler—
one that places object code and data in random locations
in memory—is sufficient to provide the independent and
identically distributed (i.i.d.) execution times that MBPTA
requires. We demonstrate empirically that this randomisation
comes at a modest cost, making MBPTA practical for the first
time on conventional hardware.

II. BACKGROUND

Unlike conventional timing analyses that simply produce a
(possibly quite conservative) upper bound on execution time,
probabilistic timing analysis provides a probabilistic WCET
(pWCET) curve that bounds the execution time of the program
under analysis. Each point on the curve represents the execu-
tion time of a program on the x-axis, and the probability that
execution time will exceed this bound (e.g., 10−16), along the
y-axis. The probability of exceeding a bound is, appropriately,
called the exceedance probability. The probabilistic timing
behaviour of a program (or an instruction) can be represented
with Execution Time Profiles (ETPs). An ETP defines the
different execution times of a program (or latencies of an in-
struction) and its associated probabilities of ocurrence. That is,
the timing behaviour of a program/instruction can be defined
by the pair of vectors (

→
l ,
→
p ) = {l1, l2, ..., lk}{p1, p2, ..., pk},

where pi is the probability the program/instruction taking
latency li.

There are two variants of probabilistic timing analysis
(PTA): static PTA, or SPTA, and measurement-based PTA,
or MBPTA. This paper focuses on measurement-based PTA
as it has been shown to have higher potential impact in real-
time industry [12]. MBPTA constructs the pWCET curve from
a collection of observed execution times of the application
under analysis by applying extreme value theory (EVT) [17],

1Note that this probability is different from frequency: a memory instruction
may have a 50% hit probability if at every cache access we flip a coin and
hit if we get heads. Conversely, if the instruction hits and misses alternately,
it has a hit frequency of 50%.



Fig. 1. CDF of observed execution times and tail projection

[12]. EVT allows the projection of the upper-bound of the tail
of the cumulative distribution function (CDF) given by the
observed execution times. By doing so, MBPTA techniques
can provide pWCET estimates for any exceedance probability.
Figure 1 shows a hypothetical result of applying EVT to a
collection of 1,000 observed execution times. The continuous
line represents the inverse CDF derived from the observed
execution times; the dotted line represents the projection
obtained with EVT, i.e. the actual pWCET curve [15], [8],
[12].

MBPTA requires that events under analysis, here execution
time observations, to be modelled by independent and iden-
tically distributed (i.i.d.) random variables. This is the case
when observations are independent across different runs and a
probability can be attached to each potential execution time. To
that end, it is enough if we make the events that may introduce
variation in the execution time of a program (e.g. memory
operations) random events. Hence, taking measurements from
a program is equivalent to rolling a dice, with each face having
a probability of appearance. Making enough rolls is enough
to apply EVT and hence MBPTA.

Independence for a given instruction exists, if the timing
probability distribution captured by its ETP is fully indepen-
dent of the execution history, that is, its ETP holds constant
across all executions of the instruction. However, deriving a
processor architecture that provides such property is unafford-
able [11]. Instead, PTA-imperfect approaches are also feasible.
In those approaches the timing vector of the ETP is insensitive
to execution history but the probability vector is not, so means
for probabilistically bound that dependence are needed. The
fact that dependences are probabilistic makes that the mea-
surements (execution times) obtained by running the program
probabilistically capture the effect of such dependence.

Hence MBPTA requires that: 1) each memory access has
a hit-miss probability, and 2) In case memory instructions
are dependent, that dependence must be probabilistically
modellable. As noted in [12] the existence of the ETPs for each
instruction ensures that the execution times are probabilistic
and therefore MBPTA can be applied. Hence, MBPTA simply
needs those ETPs to exist in order to satisfy its requirements
(i.i.d. execution times), but unlike SPTA (the second variant
of PTA), there is no need to actually compute them.

Previously, MBPTA has only been shown to work with
fully-associative random-replacement (FA-RR) caches. In a
FA-RR cache, on a access resulting in a miss, each cache
line can be selected as victim for replacement with probability
1/N , where N is the number of cache lines (ways). For FA-
RR caches, the timing behaviour of each cache access can
be represented as: (

→
l ,
→
p ) = {lhit, lmiss}{phit, pmiss}, where

lhit and lmiss are the latency of hit and miss respectively
and phit and pmiss the associated probability in each case.
Other cache designs, such as conventional modulo placement
and least recently used (LRU) replacement caches, are de-
terministic by nature, making impossible to attach a hit/miss

probability to each memory operation, precluding the use of
PTA techniques. This paper extends the applicabilty of PTA to
conventional architectures by employing compiler and runtime
techniques that enforce i.i.d. properties for execution times.
We verify this using standard statistical tests of independence
and identical distribution, and via an informal argument that
random layout guarantees the existence of an ETP for every
memory operation.

III. COMPILER AND RUNTIME SUPPORT FOR MBPTA
A memory object refers to a memory entity, normally stored

in consecutive memory addresses (e.g., functions, basic blocks,
and data structures), which is manipulated by a software
component. These objects can be created off-line by the
compiler and the linker, or on-line by the program loader and
run-time memory-related libraries.

The location at which a memory object is placed into
memory determines its location in a cache that implements
deterministic placement policy, such as modulo placement. In
particular placement policies determine the cache set in which
the memory object is allocated based on its memory address.
Analogously, if deterministic replacement policies such as
LRU are used, the access pattern dictated by the program
under analysis determines the cache way in which data are
stored based on its access history with respect to the other
cache accesses that are located in the same cache set.

We define a cache layout as the result of assigning all
memory objects that form a program into the N cache sets
of the cache. Under each cache layout of a program, memory
objects conflict in a different manner in cache, which, in
combination with the replacement policy, may potentially
result in different execution times for the program.

Given a set of memory objects and a fixed sequence of
memory accesses, deterministic cache designs generate the
same cache layouts due to deterministic placement, mapping
objects into the exact same cache sets on every execution,
and the same sequence of accesses in each cache set due to
deterministic replacement. As a result, the execution time does
not vary across program invocations 2 as long as (i) objects
are always placed in the same memory location and (ii) the
same input data set is used, under which a single path in the
program is exercised.

MBPTA has been shown deal with multi-path programs [12]
successfully. However, in order to work with object placement,
MBPTA assumes FA-RR caches. FA-RR caches [12] have a
single cache set and thus, placement is not an issue because
there is a single cache layout (all objects are mapped into
the only cache set). Random replacement introduces the ran-
domisation needed by MBPTA. Hence, FA-RR caches cause
execution time to change across executions. These differences
have the disadvantage of adding variance but the significant
advantage of producing i.i.d. execution times. The reason is
that the location in which data (at cache line granularity) are
placed into cache is randomly selected, independent of the
location of objects in memory.

Enabling MBPTA to use conventional cache architectures
(that is, deterministic set- associative caches) would greatly
enhance the applicability of probabilistic timing analysis be-
cause such caches are present in nearly all processors. We
now explain how it is possible to achieve the effect of
randomised hardware on conventional caches with assistance

2The effect of other activities affecting the execution time of the program,
such as OS noise, is not taken into account by the WCET analysis tool but
rather at the system integration level.



Fig. 2. Different cache locations of functions fa and fb in a direct-mapped
cache implementing a modulo placement policy. Red (shaded) locations
correspond to cache conflicts among the two functions.

from a specialised compiler and runtime system that randomise
the location of objects in memory before execution begins.

For the sake of clarity, we first assume that caches are direct-
mapped with modulo placement, so there is no replacement
policy. We next generalise our approach by considering set-
associative caches implementing a replacement policy.

A. Random Location of Memory Objects
The location of memory objects in random memory po-

sitions has the effect of leading deterministic direct-mapped
caches to behave as random ones. The reason is that ran-
domised layouts lead the cache set to be randomly selected
at every new memory allocation, mimicking the behaviour of
a random placement policy and so generating random cache
layouts across program invocations.

Consider a program formed by a loop in which two leaf
functions are called: fa and fb, each composed of sequential
code. Assume that we execute this program on a processor
with a direct-mapped cache implementing a modulo placement
policy, and that the total size of the two functions is smaller
that the cache size. Since caches are typically much larger than
functions, this is a reasonable assumption.

Figure 2 shows three different possible cache layouts. In
Figure 2(a), the two functions are placed in consecutive
memory positions that do not collide with each other, thereby
having no cache conflicts among objects (inter-object conflict).
However, if they are placed in memory positions such that the
modulo function makes two pairs of addresses from the two
functions collide into the same cache set, the effectiveness of
the cache will be decreased because of inter-object conflicts,
as shown in Figures 2(b) and 2(c). Random layout of memory
objects results in random cache layouts, each leading to
potentially different execution times.

Note, however, that the cache conflicts within memory
objects(intra-object conflicts) are deterministic. For instance,
if the size of fa size exceeds the size of the cache, some of
its cache lines would be mapped into the same cache set and
would conflict. MBPTA requires execution times collected to
capture the behaviour of the program under analysis. Such
behaviour can manifest in only two ways: (i) constant or
(ii) probabilistic, because deterministic non-constant behaviour
cannot be modeled with probabilities. Therefore, we require
that the compiler, linker and runtime have the ability to align
memory objects to cache line boundaries so that intra-object
conflicts are constant. In this way, all runs of the program will
have identical intra-object conflicts. By doing this, memory
objects can only introduce execution time variations due to
random placement of objects in memory.

B. Effect of Placement Policy
This section shows how random layout causes the modulo

placement policy to exhibit the same i.i.d. properties as random
placement;

A modulo placement policy uses the index bits of the
memory address to identify the cache set. This approach

Fig. 3. Location of functions fa and fb in main memory.

logically divides the address space into M/N different chunks,
where M is the total number of main memory entries. Within
each chunk, memory addresses are mapped to the N cache
sets in the same manner.

Figure 3 shows a logical address space division produced
by the modulo placement policy, and the location in main
memory and in cache of functions fa and fb. As shown, the
memory chunk in which a memory object is placed is not
relevant. Instead, what really determines how memory objects
will conflict in cache is the offset of the objects within chunks.
Thus, if we randomly place those objects with respect to
memory chunk boundaries (either in a new chunk or in an
already in-use chunk if objects do not overlap), inter-object
conflicts will occur randomly. Further, each object will have
exactly 1

N different placements with respect to the cache given
that, as stated before, memory objects are aligned to cache line
boundaries.

C. Formal Justification for Applicability of MBPTA

MBPTA requires the existence of an ETP for each instruc-
tion [12]. We now argue why randomised layout guarantees
the existence of a ETP for each instruction i, i.e. ETP (i) =
{lhit, lmiss}{1− Pmissi , Pmissi}.

A memory operation i accessing cache line ca belonging
to object a will conflict in the cache if there exists another
cache line cb belonging to another object b that is mapped
into the same cache set. Hence, assuming an arbitrary sequence
of memory accesses to cache lines ca, cb1 , cb2 , · · · cbm , ca be-
longing to objects a, b1, b2, · · · bm respectively, the probability
that the second access to ca is a miss can be given as
Pmiss(i) =

(
1
N

)m
, where 1

N is the probability that a particular
cache line is placed into a given cache set and m is the number
of unique cache lines accessed in between the two accesses to
the cache line ca.

As in [11],[12], accesses to different pieces of data belong-
ing to a particular cache line are considered as accesses to the
same address since all of them access the same cache line.

Recall that the value of the ETP does not need to be
known for MBPTA (although it is needed for SPTA [11]).
For MBPTA, it is enough that these ETPs exist. As shown,
miss (and thus hit) probability can be computed, as needed to
generate an ETP for memory operations, so i.i.d. properties
are fulfilled and we can derive probabilistic WCETs using
MBPTA techniques.

D. Implications of Memory Object Size

a) Big objects: Intra-object conflicts: While random
layout forces inter-object conflicts to occur with a given
probability (as shown in Section III-C), this is not necessarily
the case for intra-object conflicts that are not affected by the
memory location.

For example, consider the (contrived) case of an object
spanning across 9 cache lines and an 8-set direct-mapped
modulo-placement cache. In such an arrangement, the first and



Fig. 4. Cache locations and layouts of functions fa and fb in a deterministic
two-way set-associative cache. Red regions denote the cache way conflicts
between the two functions.

the last cache lines of the object will always collide (map to
the same cache line), regardless of where the object starts.

However, this deterministic behaviour does not affect our
analysis because intra-object conflicts occur independently
of the location of memory objects. In general, as long as
the access pattern inside objects is fixed, then the effect of
intra-object conflicts can be seen as a constant that does not
affect the i.i.d. property of memory accesses. On the other
hand, different access patterns within a memory object can be
only generated across different input sets, which are properly
characterised by performing a sufficiently large number of
runs (typically in the order of few hundreds) for each path
as described in [12].

b) Small objects: Typical cache line sizes are in the
range of 16 to 256 bytes. Some memory objects such as
the code or stack of functions may be rather small so that
more than one object (e.g., two functions) fit inside the same
cache line. If two such objects can be placed into the same
cache line, violating MBPTA assumptions because execution
time variations could arise from a non-probabilistic source.
Therefore, the compiler, linker and runtime software must
impose that two memory objects are either always or never
placed in the same cache line. In this way, the execution time
of any run (observation) of the program used to feed MBPTA
always reflects the actual conflicts, removing this conflicts as
a source of execution time variation among different runs.
the real behaviour of the program. Otherwise, any unobserved
behaviour could occur systematically once the system is de-
ployed, thus invalidating the analysis.

E. Effect of Replacement Policy

Deterministic replacement policies (e.g. LRU) select the
cache way using the order of accesses to the contents of the
selected cache set. A cache with a deterministic replacement
policy can be made to behave as if it was using random
replacement by randomising the order of memory accesses to
each particular cache set. Random layout changes the mapping
of objects to sets on each execution, thus randomising the
order of accesses to each cache set in a random (and thus
probabilistic) way.

This effect is illustrated in the following example. Fig-
ure 4(a) shows the cache layout of placing fa (left) and
fb (right) into a two-way set-associative cache. None of the
functions has a sequential structure and so they allocate two
lines in some cache sets, and only one or zero lines in other
sets. This example reflects the cache utilisation of the dynamic
invokation of functions when some parts of the code can be
skipped due to jump instructions.

When the two functions are co-located in the same cache
(Figures 4(b) and (c)), cache lines belonging to fa and fb
may conflict in some cache sets. Such conflicts will depend on
where functions have been randomly placed. Thus, if functions

are located as shown in (b), there will be conflicts in 3 cache
sets (marked in red), as 3 or 4 different cache lines are
candidates for only two ways. This is not the case for the
last cache set, in which cache lines belonging to fa and fb
coexist in it. Instead, if functions are located as shown in (c),
there will be conflicts in only 2 cache sets (marked in red),
different from the ones that occur in (b).

As shown, random layout of memory objects randomises
the cache lines from each object colliding into each set,
so the accesses to each cache set (those determining the
behaviour of deterministic replacement policies such as LRU)
will be determined by random events (the particular random
layout). This ensures that inter-object conflicts do not occur
deterministically, and their effects can be captured by ETPs.

A hybrid solution, combining randomised layout with ran-
dom replacement, would cause both inter- and intra-object
conficts to occur probabilistically and would increase the
degree of randomisation. This cache configuration is becoming
increasingly popular and is implemented in a number of
current processors [2], [16]. Its recent popularity is due to the
fact that randomised replacement decreases the probability of
pathological conflicts in cache sets induced by deterministic
replacement policies, thus decreasing the probability of degen-
erate intra-object cache layouts that lead to large numbers of
misses (thrashing).

F. Randomising Compiler and Runtime System

We evaluate the effectiveness of software randomisation
using Stabilizer. Stabilizer comprises both a compiler trans-
formation (using LLVM [1]) and a runtime system that
randomises the layout of functions and stack frames [7].
Stabilizer uses the DieHard memory allocator as the basis
of its runtime system to perform efficient (O(1)) dynamic
layout randomisation [3]. overruns and use-after-free errors,
DieHard’s sparse random heap structure is ideal for ensuring
that allocated objects have an equal probability of mapping to
each cache set.

1) Function Randomisation: Function randomisation works
by relocating a function at startup time by copying its body to
a new random memory location. A Relocation Table (RT) is
placed at the end of each new relocated function to identify the
addresses of all globals and functions pointed by the relocated
function.

2) Stack Randomization: Stabilizer randomises the stack
by making it non-contiguous: each function call has a stack
frame in a random location. These randomly-placed frames are
also allocated via DieHard, but to reduce overhead, Stabilizer
reuses them for some time before they are freed. This bounded
reuse improves cache reuse and reduces the number of calls
to the allocator while still enabling re-randomisation.

Both function and stack randomisation enable randomising
the location of memory objects in memory so that execution
time variations depend solely on random events by removing
the structural dependence on the actual memory location
of objects. Hence, i.i.d. properties needed for MBPTA are
fulfilled.

IV. EXPERIMENTAL SETUP

All measurements presented here are conducted on a
PowerPC-compatible cycle-accurate execution-driven simula-
tor based on the SoCLib simulation framework [24]. The
simulator models a 4-stage pipelined processor with a memory
hierarchy composed of separate instruction and data caches
and main memory. Both caches model a 4KB set-associative



TABLE I
I.I.D. TESTS FOR CACHES USING MODULO + LRUmod+lru AND MODULO +

RANDOM REPLACEMENT (mod+rr).
Cache Benchmark id. distr. ind. Passed?

mod+rr a2time 0.73 0.38 ok
cacheb 0.52 0.13 ok

puwmod 0.55 0.51 ok
mod+lru a2time 0.25 0.38 ok

cacheb 0.45 1.45 ok
puwmod 0.29 0.13 ok

cache with 8 ways, 32 sets and 16-byte line size, implementing
a modulo placement policy with an LRU or random replace-
ment policy. The data cache implements a write-through,
no- allocate write policy. The only source of execution time
variation in the processor is the cache.

We use a subset of the EEMBC Autobench benchmark
suite [21] for evaluation. These benchmarks implement rep-
resentative algorithms that are used in hard real-time systems,
and have been specially designed for embedded environments.
Since benchmarks are much smaller than real applications,
the number of functions and function calls inside does not
suffice in general to illustrate the potential of our approach.
Therefore, we have used 3 benchmarks: a2time01, cacheb01
and puwmod01. Cacheb01 has been left unchanged. A2time01
and puwmod01 have a single main loop. We have transformed
the code inside loops into a sequence of function calls so that
function and stack randomisation has some effect.

To compute pWCET estimates, we use the extreme value
theory (EVT) methodology presented in [12]. This method
starts from a sample of execution times of the program under
analysis (in our case, 1000 runs). A technique called block
maxima is then used to extract those execution times used
to project the tail of the execution time distribution. We use
groups of 50 elements as it has been shown to provide good
results [12]. Finally, the resulting execution times are then used
by EVT to determine the parameters of a Gumbel distribution
that approximates the tail by applying a linear regression to a
QQ- plot of our data [10].

V. RESULTS

A. Independence and Identical Distribution Tests

Table I shows the results of the i.i.d. test for the three
benchmarks under analysis considering two cache configura-
tions implementing modulo placement and LRU replacement
policies (labelled as mod+lru) and modulo placement and
random replacement policies (labelled as mod+rr).

In order to test independence we use the Wald-Wolfowitz
independence test [6]. We use a 5% significance level (a
typical value for this type of tests), which means that absolute
values obtained after running this test is lower than 1.96 if
there is independence, and higher otherwise. For identical
distribution, we use the two-sample Kolmogorov-Smirnov
identical distribution test [5] as described in [12]. For 5%
significance, the outcome provided by the test should be above
the threshold (0.05) to indicate identical distribution, and non-
identical distribution otherwise.

For all cases, the p-values obtained pass the tests (p −
value > 0.05 for identical distribution and p − value <
1.96 for independence), indicating that both cache configura-
tions provide identically distributed and independent execution
times when we randomise function and stack layout.

B. pWCET Estimates

Figure 5 shows the pWCET estimates obtained with
MBPTA [12] for a2time (a) and cacheb (b) and puwmod (c),

TABLE II
OVERHEAD IN THE PWCET ESTIMATES AT AN EXCEEDANCE

PROBABILITY OF 10−16 , UNDER DIFFERENT NUMBER OF ITERATIONS.
Iterations Code Code+Stack

10,000 1.13x 1.66x
1,000 1.6x 2.37x
100 6.22x 9.3x

considering our two cache configurations. In all cases, we
require less than 1,000 runs to project the tail.

The effect of using a random replacement policy instead
of LRU replacement policy depends on the program. If we
consider the pWCET estimates at an exceedance probability
of 10−16, random replacement increases the pWCET estimate
of puwmod by 5% over LRU. However, for a2time, random
replacement reduces the pWCET estimation by 2% over LRU.
For cacheb, there is almost no variation in pWCET estimates
between random and LRU replacement policies (less than 1%).

These results support the analysis of Section III: software
randomisation makes it possible to apply MBPTA without re-
quiring additional hardware support such as a random replace-
ment policy. Nonetheless, the use of a random replacement
policy remains desirable as it further randomises inter-object
and intra-object conflicts.

C. Overhead
The software randomisation approach introduces some over-

head. This is due to the relocation of functions, in which the
body of each function is copied to a new random memory
location; and relocation of the stack, which causes each
function call to move the stack to a new random location.

In order to understand the impact on pWCET estimates,
we repeat the same experiment as in the previous section
but on top of a FA-RR cache, where software randomisation
has no effect on timing behaviour: FA-RR caches have only
one cache set and the way selection is random. As a result,
the pWCET estimate increment observed with respect to not
applying software randomisation is only due to the overhead.

Moreover, it is also important to consider the trade-off
between the execution time of the new code introduced by
the software randomisation technique with respect to the
overall execution time of the application under analysis. In
order to illustrate this, we have designed a specific synthetic
benchmark consisting of a loop which contains calls to four
distinct functions. This structure is very similar to the one of
the Automotive EEMBC benchmarks. Each of the functions
receives two arguments and has a return value, while it
contains local variables in order to exhibit stack usage. The
code of the functions is linear, without any control flow which
may increase the benefit from the instruction cache inside an
iteration, and performs integer computations over its local data.
No global variables or floating point operations were used.

Table II shows the pWCET estimate increment at an ex-
ceedance probability of 10−16 of the synthetic benchmark
when applying only function random memory location (la-
belled as Code), and applying both function and stack random
memory location (labelled as Code+Stack). We observe that,
as we increase the number of iterations, the compiler overhead
is reduced. Thus, when considering only 100 iterations, the
software approach increases pWCET estimates by almost 10x.
Such an increment is reduced to only 66% when considering
10,000 iterations.

VI. RELATED WORK

Software randomisation has been proposed in the past for
enhancing security and performance improvement and evalu-
ation. Bhatkar et al. [4] introduce stack randomisation as a



(a) a2time01 (b) cacheb01 (c) puwmod01
Fig. 5. pWCET estimations of caches implementing modulo + LRU and modulo + random replacement (labelled as mod+lru and mod+rr respectively).

method for thwarting stack-smashing based security exploits.
Berger and Zorn’s DieHard system [3] randomises the layout
of objects on the heap to provide probabilistic memory safety,
tolerating memory management errors in languages with ex-
plicit memory management like C and C++. Mytkowicz et
al. [20] show that the memory layout may degrade a program’s
performance by as much as 300%, and they proposed varying
the link order combined with different size of environmental
variables, in order to achieve random function layout in the
memory. However, this solution requires a costly space explo-
ration and results in a static memory layout, which is the same
for every execution of a given binary; in addition, the amount
of resulting randomisation is small. By contrast, Stabilizer [7]
periodically randomises the program’s code, heap and stack
during execution to minimize the effect that memory layout
has on performance. This finer-grain, dynamic randomisation
ensures (with high probability) that measured performance is
not the result of performance outliers.

Despite the popularity of software randomisation in the
fields of security and high performance, it has found very
limited applicability in hard read-time systems, where WCET
of the program must be derived and deterministic behaviour
has traditionally been considered the ideal. Quiñones et al. [13]
explored the effect of the memory layout in the WCET of a
program and showed that a random replacement policy can
lead to less performance variation compared to other policies,
while it has acceptable average case performance. Based
on this observation, probabilistic timing analysis techniques
have been developed [12], [11] with the assumption that
the underlying architecture uses fully associative caches with
random replacement policy.

VII. CONCLUSIONS

This paper presents an approach that extends the appli-
cability of measurement-based probabilistic timing analysis
(MBPTA) to systems with a wide range of cache designs,
including conventional cache designs implementing modulo
placement policy and both LRU and random replacement poli-
cies, via a software-only randomising compiler and runtime
system. This is a first step towards the use of MBPTA in
existing hardware systems.

Placing functions and stack frames in random memory
locations causes deterministic modulo placement policies to
exhibit the same behaviour as a random placement policy,
yielding observed execution times that satisfy the indepen-
dent and identically distributed (i.i.d.) properties required
by MBPTA. We provide a formal argument explaining how
software randomisation enables the derivation of execution
time profiles (ETPs) for each memory operation that determine

the probability that each memory operation is a hit or a miss.
Finally, we empirically show that software-only randomisation
causes deterministic caches to behave as if they are random,
making it possible to use MBPTA with conventional hardware.

REFERENCES

[1] LLVM. http://dragonegg.llvm.org/.
[2] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.
[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory

safety for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 158–168, New York, NY, USA, 2006. ACM Press.

[4] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error exploits. In the
14th USENIX Security Symposium - Volume 14, 2005.

[5] Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell.
O’Reilly Media, Inc., 2008.

[6] J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.
[7] Charlie Curtsinger and Emery D. Berger. Stabilizer: Enabling statisti-

cally rigorous performance evaluation. Umass-cs-tr-2012-012, Depart-
ment of Computer Science, University of Massachusetts Amherst, 2012.

[8] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In
the 22nd IEEE Real-Time Systems Symposium (RTSS01), 2001.

[9] Christian Ferdinand et al. Reliable and precise wcet determination for
a real-life processor. the 1st EMSOFT, 2001.

[10] D. Faranda et al. Numerical convergence of the block-maxima approach
to the GEV distribution. Journal of Statistical Physics, 2011.

[11] Francisco J. Cazorla et al. Proartis: Probabilistically analysable real-
time systems. Technical Report 7869 (http://hal.inria.fr/hal-00663329),
INRIA, 2012.

[12] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis
for multi-path programs. In the 23rd ECRTS, 2012.

[13] Quinones Eduardo et al. Using Randomized Caches in Probabilistic
Real-Time Systems. In 22nd ECRTS, pages 129–138, 2009.

[14] W. Feller. An introduction to Probability Theory and Its Applications.
John Willer and Sons, 1996.

[15] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-based wcet
estimation and validation. In the 9th WCET Workshop, 2009.

[16] http://www.arm.com. ARM Cortex-R4 processor manual.
[17] Samuel Kotz and Saralees Nadarajah. Extreme value distributions:

theory and applications. World Scientific, 2000.
[18] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of

multi-level set-associative data caches. the 9th WCET Workshop, 2009.
[19] Frank Mueller. Timing analysis for instruction caches. Real-Time

Systems - Special issue on WCET analysis archive, 2000.
[20] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.

Sweeney. Producing wrong data without doing anything obviously
wrong! In Proceedings of the 14th ASPLOS, pages 265–276, 2009.

[21] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[22] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability
of cache replacement policies. Real-Time Systems, 37:99–122, 2007.

[23] J. Reineke et al. A definition and classification of timing anomalies. In
WCET, 2006.

[24] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.


