On the usefulness of object tracking techniques in performance

analysis

German Llort Harald Servat Judit Giménez
Jesus Labarta
Barcelona Supercomputing Center
Universitat Politecnica de Catalunya

{gllort, harald, judit, jesus}@bsc.es

Abstract

Understanding the behavior of a parallel application is crucial if we are to tune it to achieve its
maximum performance. Yet the behavior the application exhibits may change over time and depend on
the actual execution scenario: particular inputs and configuration variables, the number of processes
running, or hardware-specific problems. Then, beyond the details of a single experiment a far more
interesting question arises. How does the application behavior respond to changes in the execution
conditions?

In this paper, we demonstrate that object tracking concepts have huge potential to be applied in the
context of performance analysis. We leverage tracking techniques to analyze how the behavior of a
parallel application evolves through multiple scenarios where the execution conditions change. This
method provides comprehensible insights on the influence of different parameters on the application
behavior, enabling to identify the most relevant code regions and their performance trends, variabilities

and bottlenecks.



1. Introduction

The execution of a scientific code is dependent on a variety of parameters that may have a strong
impact on its performance: the size of the problem, the number of processes running in parallel, their
physical mapping onto nodes, the choice of parallel programming model, and many other hardware and
software adjustments that are significant for the particular application. The combination of these factors
constitute an unique execution scenario, which directly influences the application behavior and results.

Often, it is very difficult to anticipate the impact of different configurations on the final performance,
work balancing or memory usage. Analyzing these effects is important not only to get better under-
standing of the program behavior, but also to quantify the improvements or degradations so as to foresee
trends in the application performance. To this end, it is necessary to provide the users with tools to
compare different scenarios and correlate observations between them.

The main contribution of this paper is a technique for easily performing very diverse parametric
and evolutionary studies, correlating performance information either from multiple runs with different
configurations, or different time intervals within the same experiment. Our approach focuses on the most
relevant code regions and shows their evolution with respect to several performance metrics to explain
which factors lead the different parts of the code to improve or degrade. To this end, we present a tool
where the object tracking and performance analysis worlds converge.

Traditionally, tracking techniques are used to locate a moving object in an image or video sequence.
Practical examples include human-computer interaction, security and surveillance or traffic control. A
first step to these problems is to delimit the objects of interest within the scene. Therefore, object recog-
nition algorithms (e.g. image segmentation and edge detection) will look for appearance characteristics
(such as color, intensity, or texture) and distinguishing features that identify them. Then, consecutive
frames are compared to find a correspondence between objects and their possible displacements.

Analogously, we will represent multiple execution scenarios as a sequence of images expressing the
evolution of the application metrics. Code regions will be drawn in the images as independent track-

able objects, in a space whose dimensions are not the actual physical dimensions of height, length and



breadth, but performance metrics that describe how these regions behave. Movements in the perfor-
mance space will highlight changes in the application performance, which can be modeled into metrics
that evaluate the performance trends of the different regions of code.

Difficulties in tracking mainly arise due to abrupt object motion, and tracking code regions is not
exempt from this risk. Even though one would normally expect the application performance not to radi-
cally change all of a sudden, performance variations may result in large changes of behavior, preventing
us from borrowing any assumption about the object’s position, direction or shape in the performance
space. To tackle this problem, we present an algorithm that automatically tracks the evolution of code
regions along multiple scenarios despite their possible performance variations.

While previous analysis techniques for comparing experiments or phases [ 10, 18, 20] have been pre-
sented, our work goes one step further and presents a novel technique that does not rely on pre-selected
metrics and profile data for static code phases, such as routines, loops or user-defined sections. One
problem of summarizing the data at these levels is that one same section of code can exhibit different
behaviors, thus making averages will hide divergent performance trends. Furthermore, access to the
sources may be restricted, or the user may have no prior knowledge of the application to decide which
sections are meaningful to instrument. Our position is that it is necessary not to consider averages,
but every independent instance to detect structure and capture multi-modal variability. To this end, we
characterize every different type of performance behavior abstracting from the code regions that present
them. In this scenario, the use of tracking is a natural and intuitive tool that allows us to measure the
evolution of these behavioral trends automatically.

We prove this technique useful to discover and understand valuable performance insights in very
diverse cases of analysis, of which we report as examples, the study of the impact of: different archi-
tectures and software, increasing problem sizes, memory bandwidth and cache contention, multi-core
sharing and scalability.

The rest of the paper is structured as follows. Section 2 describes the process we follow to build
a sequence of images from different experiments, each representing how the different code regions

perform with respect to several metrics. Section 3 describes the algorithm that tracks the evolution of



the different code regions along the images. Section 4 shows how this technique can be applied to obtain
interesting performance observations for very diverse studies. Section 5 gives a brief overview of similar

works in the field. Finally, we compile the conclusions from our research in Section 6.

2. From performance data to trackable objects

Analysis tools usually choose to display performance data to the user in the form of profiles at the
level of program subroutines (loops, or user-defined sections). This has the advantage of being a very
natural and understandable representation, but also carries a few drawbacks along. Prior knowledge
of the application is required to determine which functions are relevant, so as to skip too fine-grain
routines that would perturb the execution due to the instrumentation overhead. And when no dynamic
instrumentation mechanisms are available, access to the sources and manual modifications are needed to
inject measurement probes in these points of interest. Moreover, considering a whole routine as a single
unit of behavior can be deceitful, because different invocations may behave differently, depending on the
parameters and conditional phases leading to distinct code flows with divergent performance. In these
cases, a global average may convey the wrong idea of a reasonable overall behavior, while specific sub-
phases may be reporting low performance and their optimization could lead to significant improvements,
as provenin [17, 16].

A different granularity to characterize the application performance are the computing regions (i.e.
CPU bursts). A CPU burst is defined as the sequential computation between calls to the MPI or OpenMP
runtimes. Delimiting these regions only requires library interposition to instrument the parallel pro-
gramming API, thus there is no need for user intervention nor access to the sources. Each CPU burst
is characterized by its duration, call stack references that point to the corresponding code region, and
a vector of hardware counter metrics which describe how it performed. Considering every CPU burst
rather than simple averages, we can see whether variability distributes across processes or time, exposing
a fine-level characterization of every code region and the nature of their inefficiencies. This approach is
less attached to the structure of the source code, but focuses on the performance properties of the actual

computations. In [7], the authors demonstrate that this granularity is useful for the analysis of parallel



applications, as it reflects an intermediate point of view between the very low level characterizations
(i.e. basic blocks or instruction-level simulators) and higher abstractions (i.e. functions, loops or user-
defined code blocks). Regardless of our current implementation, the technique presented would as well
be applicable at different granularities.

In computer vision, one or more particular objects (e.g. humans, cells or cars) are first identified
within a frame (a single picture in a series of images) and then tracked as they move through a sequence
of frames. Likewise, we are going to identify the computing regions of interest and keep track on
how their performance evolves along multiple experiments. To this end, we first need to represent the
performance measurements observed in the experiments graphically, or in other words, to capture our
sequence of frames. This process consists in selecting any pair of metrics to draw a two-dimensional
space where we express the behavior of every individual CPU burst with a point in the plane. Typically,
we select Instructions per Cycle (IPC) and Instructions Completed, which are useful to bring insight into
the overall performance. Trends in Instructions Completed indicate regions with different workloads,
while IPC measures how fast the work is done. While the experiments described hereafter define these
two dimensions, the whole process can be likewise applied to any arbitrary number of dimensions.

With the images generated, the next step is to identify the objects of interest within them. Due to the
highly iterative nature of HPC applications and their frequent SPMD organization, many computations
will be very alike in terms of the performance they achieve. In the image, this translates as clouds of
points that are close in the space, which can be grouped into a single entity according to their similitude.
Therefore, we apply the cluster analysis technique presented in [7, 9], that uses density-based clustering
in order to group similar CPU bursts with respect to the metrics selected.

The result of the analysis is a scatter-plot representation of the performance space, where the axes
correspond to the metrics used to cluster the data, and all CPU bursts that are similar with respect to
these metrics get grouped into the same object. Clusters are then intrinsically connected to code regions,
and both terms will be indistinctly used for clarity, but this connection is not necessarily univocal: a
single region presenting bimodal behavior will result in two distinct clusters, while two different regions

with similar behavior will conform the same cluster. So in essence what each cluster represents is
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Figure 1: Structure of WRF computing bursts

a behavioral trend, independently of the code region that exhibits it. Being the objective to improve
the application performance, characterizing the dynamic behavior of the regions rather than static code
structures guarantees that we direct the analysis towards the zones of real interest.

Figure 1a shows the structure of the twelve most time-consuming regions of the WRF application [6]
ran with 128 processes. Clusters are formed according to similarities in the achieved performance (X-
axis) and number of instructions (Y-axis). Those that stretch vertically (i.e. Region 2) denote instructions
imbalance, while those that stretch horizontally (i.e. 7 and 11) reflect IPC variations. Computations with
high amount of work but low performance are an interesting subject of study, as well as those with the
same amount of work at different speeds, or vice-versa, as these indicate potential load-imbalances.

The clustering process of a frame assigns numbers and colors to every cluster identified. Since this is
an independent, non-supervised process, the clustering of a second, different frame does not necessarily
have to result in the same number of objects, assign the same identifiers, or exist a direct correspondence
between their numberings. Figure 1b shows the structure of WRE, doubling the number of cores in the
execution. The number of instructions executed per core has reduced in inverse proportion, and so all
clusters have moved down along the Y-axis. Intuitively, we can see that cluster 2 (yellow) turned into 3
(red). And a few clusters have slightly improved their performance (i.e. 4 and 6 moved right with higher
IPC), while cluster 11 significantly degraded. But some changes are far from evident: zooming into the

boxed areas, you can see the number of clusters increasing from 3 to 4. Is that the left-most cluster in



the 128-task case redistributed into the two small ones on the left of the 256-task case? Or is that these
two come from split parts of the two left-most clusters?

With changing scenarios that may affect the application performance, clusters can not only move long
distances or change their shape between frames, they can also vary in density, split, or merge together.
And if the parameters that differentiate the experiments vary significantly, the frames to compare can be
remarkably different, which makes even more difficult to detect the interesting regions and see how they
change from one frame to the next. Although in some cases would be possible to determine who-is-who
by visual inspection, the benefits of an automated mechanism able to detect abrupt changes among many
clusters become evident.

The first difficulty in determining which objects within a frame correspond to the ones in the next lies
on the fact that the respective scales may be different, so they can not be compared directly. For example,
if the number of processors doubles, the number of instructions executed per core will typically decrease
in proportion. A step prior to track the evolution of the objects consists in transforming the performance
scales so that they are comparable. Such metrics that are correlated with the number of processes of
the application (e.g. Instructions) are weighted by the number of cores, while the scale for the rest (e.g.
IPC) is adjusted to the minimum and maximum values seen along all experiments. Figure 1c shows
the 256-tasks case with the performance scales normalized. The relative distances compared to the base
128-tasks case are actually kept almost constant, and the experiments can now be easily compared.

In the next section we present a tracking algorithm that performs an automatic correlation of equivalent
code regions that are subject to performance variations along multiple experiments. To this end, we
extrapolate the concept of recognizing moving objects in a sequence of images to the displacement of
clusters within the metrics space across experiments. Clustering the application performance can be seen
as identifying objects (regions of code with a certain behavior) in a single frame. Subsequent clusterings
result in a sequence of images that can be compared to see how these objects move, shape-shift, merge
or split in the performance space, reflecting changes in the application behavior. Tracking their evolution
across experiments enables us to study the performance characteristics of the different computing phases

of the code, and to understand how the different configurations get to influence their behavior.



3. The tracking algorithm

The objective of this algorithm is to automatically correlate equivalent computational components that
are subject to performance variations, tracking how they move along a sequence of images that represent
the application’s performance space. Let A and B be two images, as depicted in Figure 2, where n and
m objects are respectively detected, say A = {Ay, As, ..., A, } and B = { By, Bs, ..., B,,}. The objective
is to find the maximum number of relations k, so that exists a k-partition P = {P, ..., P} of A, and a

k-partition Q = {Q1, ..., Qx } of B, that fulfill the condition:

Figure 2: Tracking scheme

Where the optimal k& is bounded above by the image with the fewer number of objects detected,
i.e. min(n,m), and the equivalence relation P; = (; is the assumption that objects in partition P;
correspond to those in partition ();. In our case, this operation is implemented using four heuristics that

evaluate different characteristics of the computing regions:

e Displacements in the performance space. Clusters can move in any direction of the space as a
consequence of performance variations, but in the general case, these will manifest as smooth,

directed transitions rather than swift leaps.

o SPMD simultaneity. In SPMD applications, all processes will be executing the same phase simul-
taneously. So if two different clusters happen simultaneously in different processes, it is likely

that they refer to the same code.



e Call stack references. Call stack information links every computation to the point in the code
where it starts and finishes executing. There will be an explicit relation between any pair of

clusters whose computations belong to the same code region.

e FExecution sequence. The temporal order in which all computations get executed can be expressed

as an ordered sequence that can be analyzed to see which code phases happen one after another.

Every evaluator is run separately and produces one or more correlation matrices representing cor-
respondences between objects. Depending on the evaluator, what these matrices express is different.
Figure 3 shows the correlations computed by the first evaluator for experiments WRF-128 (A) and
WREF-256 (B). In this case, it indicates the percentage of computations that conform object A; for
which object B; is closer. As you can see, there are cases where one object is close enough to two
others or more, so it is not immediate to determine the appropriate correspondences when the objects
are moving arbitrarily around the performance space. For the second evaluator one matrix per frame is
built, each expressing the probability of two different computations to be executed at the same time by
different processes within the same experiment. The third calculates the percentage of computations that
are part of object A; whose call stack references point to the same source code than those of object B;.
In the last case, the matrix reflects the percentage of occurrence where computations A; and B; happen
in the same chronological order. In all cases, non-zero cells evince that a given pair of objects are the
same according to that evaluator, with a certain probability. Occurrences with a very small probability
(5% by default) are neglected as outliers.

Since every evaluator considers different properties of the objects, they have to cooperate to comple-
ment the correspondences that a given one might fail to discern. The combination algorithm starts from
the set of relations found by the displacements evaluator, and enhances its results with the findings from
the SPMD evaluator. For example, if the first finds that the nearest object for As is Bs, and the latter
finds that B5 and B3 always happen simultaneously, all objects get merged into a more general relation
As = Bs U Bys. The call stack evaluator is then used to prune incorrect relations that may appear due to

imprecisions in the former heuristics. All related regions must share the same references to the source



code, so we discard those not having any in common.

We search for correspondeces reciprocally, this is to say, comparing frame A with B and vice versa,
extracting a final set of rules that correlate the objects between both frames. When the information
available leads the evaluators to not be able to clearly distinguish one region from another, the regions
in doubt are grouped together, resulting in wide relations of multiple objects. The last heuristic is finally
used to refine the results, trying to split wide relations into more specific ones.

The analysis is repeated for every pair of consecutive frames, obtaining in the end k tracked regions,
relations of objects that are equivalent along the whole sequence of images. Additionally, the tool gener-
ates plots that describe the evolution of each tracked region. The following Sections 3.1 to 3.4 describe

the above evaluators in more detail, and Section 3.5 explains the results of the tracking algorithm.

3.1. Displacements in the performance space

This evaluator takes a pair of images and performs a cross-classification of every computing burst
from the first into the latter, and vice versa. The classification is based on a nearest-neighbor criteria, so
that all points will get classified to the nearest counterpart cluster. This can be seen as projecting each
object from one image to the next, and see which object in the second image is closer.

The idea that lies behind supports on the fact that the behavior of a parallel application will not
radically change along images, and so objects displacements will generally be short. Consider again the
previous example where we doubled from 128 to 256 the number of cores in WRF (see Figures 1a and
Ic). The resulting structure for both experiments hardly differs, with very slight movements.

However, there are situations where a given region splits into two or more. For example, when new
zones of imbalance appear and separate one region into two distinct behaviors. This case can be seen in
Figure 3, where region 4 shifts to two behaviors, namely 4 and 11. Also, there are cases where clusters
can move a long way in the space, as can be the case of regions 11 and 12 in Figure 1a to regions 12 and
15 in Figure lc, respectively. In these situations, cross-classification based on distance is likely not to
assign the points to the correct cluster (both get assigned to 12 because 15 is too far away), but we can

then use the remaining evaluators to discern whether those regions are the same or not.



Ay 100% O 0 0 0 0 0 0 0
Ao 0 0 100% O 0 0 0 0 0
A3z 0 99% 0 0 0 0 1% 0 0
Ay 0 0 0 34% 0 0 0 65% 0
As 0 0 0 0 100% 0 0 0 0
Ag 0 0 0 0 0 100% 0 0 0
A1 0 0 0 0 0 0 0 0 100%
A2 0 0 0 0 0 0 0 0 100%

Figure 3: Correlations from displacements evaluator between WRF-128 (rows) and WRF-256 (columns)

3.2. SPMD simultaneity

This evaluator exploits the SPMD structure of the applications to match computing regions that hap-
pen simultaneously in different processes. Assuming this execution model, all processors are expected to
be executing the same phase of code at a time. In this case, if multiple processes are executing different
types of computations concurrently, they are likely to refer to the same code region, although there might
be performance variations that make them shift apart (e.g. the application presents work imbalance and
some processes execute more instructions than others).

Figure 4a shows a detailed view of the temporal sequence of clusters at the beginning of one iteration
of WRF 128-tasks. The same pattern can also be observed in the 256-tasks case in 4b, meaning that the
code phases and the order in which they get executed are the same in both experiments. In the first case,
all processes (Y-axis) execute the same computations over time (X-axis), but some variability appears
in the latter, where some processes execute different computations simultaneously. These are the same
regions of code, although they present slight performance variations.

Whether the application is SPMD is evaluated with the technique presented in [8]. The algorithm
takes as input the sequence of clusters for every task of the application, and performs a global sequence
alignment. Clusters from different tasks that fall into the same position of the global sequence are getting

executed simultaneously, and we use this information to add an equivalence between them.
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Figure 4: Correlations from SPMD evaluator for WRF

3.3. Call stack references

This evaluator prunes the search space by discarding matchings between regions that do not have call
stack references in common. Call stack information points to the function, file and source code line
where the computation starts, linking them to specific points of code. If two regions from two different

frames do not share any code reference, they can not be considered equivalent.

Table 1: Correlations from call stack evaluator for WRF

128 tasks Callstack references 256 tasks
Region 1 4939 (module_comm_dm.f90) Region 1
. Region 3
Region 2 6474 (module_comm_dm.f90)  Region 5
Region 5 .
Region 13
Region 3 6060 (module_comm_dm.f90) Region 2
. Region 4
Region 4 2472 (module_comm_dm.f90) Region 11
Region 7 5734 (module_comm_dm.f90)  esion’
Region 11 6275 (module_comm_dm.f90) Region 12
Region 12 - - Region 15

Table 1 illustrates a subset of the relations that can be outlined between regions from their code

references. The reason why some relations are not univocal is because the clustering process groups



computations based on their similarity with respect to selected metrics, so it is possible that different
points of code behave the same and get grouped under the same cluster. Also, if a single region presents
different behaviors, it will also appear as part of multiple clusters. This information on its own is not

enough to discriminate more, but effectively reduces the combinatorial explosion.
3.4. Execution sequence

This evaluator assumes that, unless there are changes that alter the execution flow of the program, the
code executed along different experiments will be the same, and so the sequence of computing bursts
over time will preserve the same chronological order. Looking into the position where the computations
appear in the sequences and matching those in the same position, it is possible to determine equivalent
code regions.

The sequence alignment technique referred in [8] is applied now on two experiments, and we then
compare their respective execution sequences. Keeping in mind that equivalent objects might have
different identifiers between experiments, the sequences can not be compared directly. Instead, we use
the matchings discovered so far by the previous evaluators to establish pivots in both sequences and align
them with respect to these points of reference, as exemplified in Figure 5. For example, if the former
evaluators conclude that region 1 in the first experiment becomes region 2 in the second, we can infer

from the sequences that regions 2 and 3 will correspond to 3 and 4, respectively.

‘ 1912

Figure 5: Correlations from execution sequence evaluator

3.5. Tracking results

The tool reconstructs the input images for the tracking algorithm with all objects identifiers renamed,
so that all the equivalent regions keep the same numbering and color along the whole sequence of
images. Figure 6 shows the resulting images for the executions of WRF with 128 (left) and 256 (right)

tasks. These scatter plots can be displayed in a simple animation, so that it is very easy to identify
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Figure 6: Sequence of images for WRF 128-tasks (left) and 256-tasks (right), tracked regions renamed

variations in the performance space, which enables the study of the repercussion of the changes in the
execution conditions on the structure of every particular region of code.

In addition, the tool illustrates the evolution of every computing region from the first scenario to the
last, with respect to the performance metrics selected to generate the images. Figure 7a shows a trend
line chart displaying the evolution in IPC (Y-axis) for the 128 and 256-tasks runs of WRF (X-axis). For
better readability, only the regions with higher IPC variations (above 3%) are depicted. Regions 11 and
12 present a 20% decline, while there is a slight 5% improvement for regions 4, 6 and 7.

Figure 7b shows the evolution in the total number of instructions for the regions that execute the
most. When the number of cores increases, the total amount of work gets evenly distributed, and thus
the number of instructions executed per process remains constant. The increasing trend for Region 1
denotes a 5% of code replication.

The information from these plots can be used to perform parametric studies on the influence of soft-
ware or hardware changes in the achieved performance along multiple experiments, as well as to study
the evolution of the application over time within a single experiment, enabling to extract recommenda-
tions on which way to direct the optimization process. Having call stack references associated to every

cluster, it is possible to connect the observed performance artifacts to specific points in the code. Also,
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Figure 7: Performance trends for WRF code regions
these results can be used as a model to predict the outcome of future experiments.
Table 2: Summary of experiments
Application Gadget QuantumE ~ WRF  Gromacs CGPOP NASBT HydroC MR-Genesis NASFT  Gromacs
Input images 2 2 2 3 4 4 12 12 15 20
Tracked regions 8 6 12 5 2 6 2 2 2 4
Coverage % 88% 66% 100% 100% 66% 100% 100% 100% 100% 80%

4. Experimentation

The aim of this section is to demonstrate the added value of using tracking, where the importance lays
on understanding how and why the performance of the application changes along multiple experiments.
Also, we want to stress that the proposed technique is a powerful and versatile tool that is applicable
for a variety of studies, which include but are not limited to the impact of: using different compilers
and hardware architectures, scaling the size of the problem, memory and caches contention and sharing

resources. Optimizing the applications is beyond the scope of this paper.



To this end, a variety of real applications and benchmarks were run in MareNostrum [ 1] and Mino-
Tauro [2] supercomputers. MareNostrum is a cluster of 2560 JS21 compute nodes each containing 2
dual core IBM PowerPC 970MP processors running at 2.3 GHz with 8 GB of RAM memory. MinoTauro
comprises 126 compute nodes each containing 2 Intel Xeon E5649 6-Core processors running at 2.53
GHz with 24 GB of RAM memory. The applications were linked using the default MPI implementation
installed in each system, and the ABI was set to 64 bits.

Table 2 illustrates the ability of the algorithm to identify and keep track of the different computing
regions in 10 different case-studies. The objects detected are automatically reduced to the ones consid-
ered more relevant, those that represent a high percentage of the application time, usually 10-30% of
the total. Coverage is calculated as the percentage of objects tracked by the algorithm with respect to
the maximum number of identifiable objects in the input images. 100% in coverage denotes that the
algorithm has been able to find univocal correspondences between all the objects. Values below the
optimal reflect that there were nearby objects in the input images that the tracking heuristics could not
distinguish as separate individuals with the information available, grouping them as a single entity. On
average, the algorithm successfully discriminates 90% of the objects. The following sections present

four case studies in more detail.

4.1. Studying the platform and compiler impact

CGPOP [5] is a proxy application of the Parallel Ocean Program [I1]. POP simulates the global
climate model and is a component of the Community Earth System Model. CGPOP was run with 128
processors both in MareNostrum and MinoTauro, and compiled with GNU Fortran 4.1.2 (gfortran) and
IBM XL Fortran 12.1 (xIf) in MareNostrum, and GNU Fortran 4.4.4 and Intel Fortran 12.0.4 (ifort) in
MinoTauro. In all cases, the application was compiled with the optimization flag -O3 and debug. In
this experiment we are going to stress the performance variations in the application due to the different
architectures and also study the impact of using a generic versus an architecture specific compiler.

The input to the tracking algorithm is the collection of images that depict the performance of each

individual experiment, shown in Figure 8. In all four, there are two main trends with respect to the num-
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Figure 8: Sequence of input images to the tracking algorithm for CGPOP

ber of instructions, divided into several regions due to differences in the achieved IPC. In MareNostrum,
when the application is compiled with xIf (see 8b) all computations see the number of instructions signif-
icantly reduced (36% and 33%, respectively) compared to using gfortran (see 8a), but the IPC degrades
practically in the same proportion and the overall execution time remains almost constant. The situation
in MinoTauro is very similar (see 8c and 8d), with an overall improvement in terms of less instructions
executed and higher IPC achieved, yet the same effect when changing compilers can be easily identified.

Changing the platform also alters the behavior of code, as can be seen for Region 2 in MareNostrum
which splits into Regions 2 and 3 in MinoTauro, no matter the compiler used. They all refer to the

same point in the code, but it now presents two distinct behaviors. The tracking algorithm automatically



identifies and groups together those regions that are equivalent despite the performance variations, as
illustrated by the bounding boxes, and then numerically calculates their evolution along experiments.
Table 3 summarizes the averages for IPC and instructions for both tracked regions, and their elapsed
execution time.

The specialized compilers xIf and ifort attain a reduction of 36% and 30% of the number of instruc-
tions executed with respect to gfortran in both machines, but at the expense of an average IPC loss of
36% in MareNostrum and 28% in MinoTauro, which leads to negligible changes in the execution times
of the computing regions, with variations smaller than £0.03%. In this case, the election of the compiler
may affect the computational complexity of the execution but does not have meaningful repercussions
in the total execution time.

Table 3: CGPOP performance results

MareNostrum MinoTauro

gfortran xIf gfortran  ifort

Region1 IPC 0.25 0.16 0.42 0.30
Instructions 6.8M 4.3M SM 3.5M

Duration 12.09s  12.11s 4.82s 4.68s

Region2 IPC 0.25 0.16 0.50 0.36
Instructions 4.5M 3M 3.3M 2.3M

Duration 2.13s 2.14s 0.71s 0.69s

4.2. Studying the problem size impact

The NAS Parallel Benchmarks [3] are a small set of programs designed to assess the performance of
parallel supercomputers. In this experiment we evaluate version 2.3 of the BT solver with increasing
problem sizes. Problem sizes in NAS are predefined and indicated as different classes, where Class W
corresponds to a small workstation problem size, and A, B and C correspond to standard test problems
with a 4X size increase going from one class to the next. For all classes, BT was run in MareNostrum
with 16 processes.

Figure 9 shows the outcome of the algorithm applied to the sequence of experiments with increasing

problem size, where all tracked regions have been colored the same. The plots show large dynamic
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Figure 9: Sequence of output images from the tracking algorithm for NAS BT

range in the number of instructions, increasing two orders of magnitude from the bottom of Figure 9a
for Class W to the top of Figure 9d for Class C. Class W also presents large variability in IPC, which

greatly reduced in the following experiments except for Region 2. Still, the same main six computing

regions can be easily identified in all cases.

The achieved performance degrades as the size of the problem increases. Figure 10a shows there are
two decreasing trends for the IPC. For regions 1, 2, 4 and 5, a sharp loss ranging from 40% to 65%
happens as soon as we move from Class W to A and then stabilizes, while for regions 3 and 6 the IPC

keeps decreasing and does not stabilize until Class B. Figure 10b shows that this IPC reduction is related

to an increase in .2 data cache misses.

|_jm|
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Figure 10: Performance trends for NAS BT code regions

4.3. Studying the multi-core resource sharing impact

MR-Genesis [ 4] employs a finite volume approach in order to evolve the Relativistic Euler equations
combined with a Constrained Transport scheme to account for the divergence free evolution of the
dynamically included magnetic field. MR-Genesis was run in MinoTauro using 12 processes, changing
the maximum number of processes allowed per node from 1 to 12. Being 12 the number of available
cores per node in MinoTauro, the configuration for the first experiment corresponds to 12 different nodes
running a single process each, and a single node with all processes running in it for the last experiment,
with all the intermediate cases also tested. The purpose of this experiment is to study the effect of
memory bandwidth and caches contention on the application performance when sharing resources.

Since it is only the physical mapping of processes what changes, the total number of instructions exe-
cuted remains constant in all trials. However, as nodes get more populated with processes, the achieved
performance of the application decreases. Figure 11a shows the progression of IPC for the two main
computing regions of the application, which present the same behavior. Up to the 66% of the node oc-
cupation (8 tasks per node) the IPC presents a slight downslope under 1.5% from one experiment to the
next, but starts presenting sharper drops beyond this point, with an 8.5% loss when an additional process

is collocated in the node. Overall, the achieved IPC degrades a total of 17.5% when the node is full.
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Figure 11: Performance trends for MR-Genesis code regions

Figure 11b correlates all the performance metrics that describe Region 1. The Y-axis reflects the
percentage of variation of each metric with respect to its maximum value for all trials. It can be seen
that the number of L2 cache misses grows inversely to the IPC degradation rate, and the number of TLB

misses also increase as the node gets more populated.
4.4. Studying the block size impact

HYDRO [12] is a proxy benchmark of the RAMSES [4] application, that solves a large scale structure
and galaxy formation problem using a rectangular 2D space domain split in blocks. HYDRO was run in
MinoTauro, and the sequence of images in this case is built varying the block size, doubling it from 4 to
1024. The objective of the experiment is to study the impact of the block size on the performance.

The application presents a single computing phase with bimodal behavior. Figure 12a shows the
number of instructions gradually decreasing for both regions with drops from 1% to 3% up to a block
size of 32, and keeps constant beyond this point. IPC also decreases (see Figure 12b), with a total
deviation of 5% for Region 1, and 10% for Region 2, both regions presenting a sharp dip when the block
size increases from 64 to 128. At this point, the number of L1 data cache misses rockets 40% more, as
shown in Figure 12c.

Using small block sizes, the application ends up having more working sets to compute, which entails
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Figure 12: Performance trends for HydroC code regions

executing more control instructions. Since the blocks are bidimensional, and store 8-bytes elements,
when the block size is set to 64 the limit of the L1 cache is reached, which is 32 KB. With bigger block

sizes, the working set does not fit in the cache, and so the miss rate increases to the detriment of IPC.

5. Related work

Our work draws inspiration from the motion detection algorithm of moving biological objects that
are similar but non-homogeneous, presented in [15]. They apply multi-feature contour segmentation
and flux tensors for identifying the boundaries of the biological objects and the detection of deformable
motion and complex behaviors (e.g. cell crawling or division) along a time-lapse collection of images.
This problem shares domain with multimedia video analytics.

In a broader sense, object tracking is applied in the context of applications that require to associate
target objects in consecutive frames to detect how they move around the scene. Practical applications
include: motion-based recognition, automated surveillance, gesture recognition, traffic monitoring or
path planning and obstacle avoidance. [2 | | presents an extensive review of the state-of-the-art of tracking
methods, and discusses related issues including the use of appropriate image features, motion models
and object recognition.

Multi-experimental analysis has been approached by several performance analysis tools. SCALASCA
[20] includes a tool called performance algebra that can be used to merge, subtract, and average the data

from different experiments and view the results in the form of a single derived experiment. PerfExplorer



[10] supports data mining analyses on multi-experiment parallel performance profiles. Its capabilities
include general statistical analysis of performance data, dimension reduction, clustering and correlation
of performance data, and multi-experiment data query and management. TAU [I&] incorporates the
concept of phase profiling for the study of the evolution within a single experiment. This is an approach
to profiling that measures performance relative to a phase of execution, having its entry and exit marked
by the user. HPCToolkit [ | 3] merges profile data from multiple performance experiments into a database
file and perform various statistical and comparative analyses.

While they compute averages for predefined metrics and fixed phases such as functions, iterations or
events marked beforehand, we report arbitrary metrics at the level of computing regions. By doing so,
we abstract the structure of the application to the behavior of its computing phases, taking into account
the performance measurements of every single instance of computation rather than profiled averages that
may hinder their actual behavior.

Some studies have also employed non-predefined program constructs to characterize the program
behavior. In [19], BBV-based analysis is applied to detect phases within an execution. This lowers
the granularity to the instruction-level, which moves away from the semantics of the code and is not
of common use for the analysis of parallel production codes. Further discussion on the suitability of
computing regions to characterize the program behavior can be found in [7].

The fundamental difference that distinguishes our approach from the previous ones is that we do not
merely report the outcome of different experiments together. We automatically determine the regions
of interest and track their evolution along multiple executions. To this end, we translate performance
data from different execution scenarios into a sequence of images, detect structure in each image and

automatically correlate them.

6. Conclusions

In this paper we have demonstrated that it is possible to draw an analogy between tracking techniques
applied to the automatic detection of an object’s motility, and the performance analysis of a parallel

application’s evolution along multiple execution scenarios. This approach mimics the common phase



structure of a tracking algorithm, including the generation of a sequence of images, object recognition
within each frame and motion analysis of the objects across scenes.

Different scenarios are represented as a sequence of performance images that expresses the evolution
of the application either along different experiments with changing execution conditions, or along time
intervals within the same experiment. Computing regions of the application are represented as objects
in these images, described by how they behave in terms of selected performance metrics. Then, we find
a correspondence between objects along the whole sequence of images, keeping track of their possible
motions and structural changes due to performance variations. To this end, we use a variety of heuris-
tics that take into account different characteristics of the computing regions: the displacements in the
performance space, the SPMDiness of the application, the code region they refer to, and the execution
sequence. Combining their use, we are able to automatically identify the global evolution of the different
computing regions and illustrate their performance trends.

Our technique enables the analyst to identify the most interesting computing regions and the nature
of their inefficiencies precisely, without prior knowledge of the application and automatically, enabling
the identification of the most appropiate solution for the performance artifacts observed. To this end,
we have studied the effect of changes in software such as different compilers and program versions,
different testing platforms, sharing multi-core resources, problem and working set sizes, and the program
scalability.

All in all, this work presents a versatile tool that can be applied in very different scenarios, enabling
the analyst to study how the different execution parameters have an impact on the application perfor-
mance; analyze the evolution of each code region independently; and ultimately helps to gain better
understanding of the application behavior, much beyond what can be learned from a single experiment.

As future work, we consider interesting to extend this mechanism to build predictive models able to

foresee the performance of experiments beyond the sample space.
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